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SUMMARY

The effect of the variation of meteorological parameters
on the estimates of sound intensity at distances from a few to
several tens of kilometers 1s discussed. The meteorological
parameters concerned are virtual temperature, wind components,
and the humidity (water vapor pressure specifically). Sound
intensity estimates are based on the results of a ray tracing
technique,

The variations of intensity estimates as determined by
Monte Carlo methods are discussed in Chapter II. It is found
that the variability is in the neighborhood of 5 decibels
regardless of whether the magnitude of atmospheric variability
corresponds to that expected over a fraction of an hour or to
a half a day. A significant factor is the determination of the
probability of returning sound rays at a given location; in
other words, whether the ray tracing method ylelds a sound

intensity estimate or none at all,

The basic characteristics of the variability of wind,
temperature, and vapor pressure are discussed in Chapter IITI,
This information is required as an input for the calculations

reported in the previous chapter,

The effect of atmospheric variability on sound attenuation
1s of a different character from that due to the effect on the
geometry of the propagative pattern and may be determined by
standard methods., The results of fthe analysis, in Chapter IV,
indicate that the variablility of atmospheric humidity is the
most important factor. The small scale perturbations have little
effect, but the large scale perturbations that enter into



variations expected over a perlod of half a day may account
for intensity variability of several (near 5) decibels at 10 km.

The appendices include several toplcs that are of importance
but which would interrupt the trend of the presentation if
included previously. Appendix A 1s devoted to a discussion of
the ray tracing technique. Several well known methods are
presented in some detail. The physical assumptions behind ray
tracing methods are discussed. It is found that the ray tracing
procedure as applied to the problem at hand (sound (noise) with
a broad spectrum and with appreciable intensity in the low
frequency bands) seriously violates these physlcal assumptions.
The situation may be eased somewhat (but not completely) by a
modification of the interpretation of the atmospherlc measure-
ments. When the data points of a vertical sounding through the
atmosphere are jolned by straight lines, the description is
quite adequate for most purposes, but the presence of "corners"
is physically unacceptable for sound propagation estimates
using fay tracing. A method is proposed in which the sounding
is described by using parabolic arcs that Join the data points
in as "smooth" a way as possible,

The mathematical problems involved in a theoretical
discussion of the variability of sound intensity estimates are
discussed in Appendix B,

Appendix C 1s a summary of several methods of constructing
sequences of random numbers with glven second order properties
(standard deviations and internal correlations) from independent
random numbers,

-X -



CHAPTER I

INTRODUCTION

A. THE PROBLEM

It 1s required to estimate the varlatlons expected 1n
sound 1ntensity level from an intense nolse source located
on the ground at other points on the ground at dlstances
from a few to several tens of kllometers from the source

which are due to meteorological factors.

To quote L. M. Brekhovskixn(1)™(p. B46), "....we shall
investigate the fleld from a concentrated source situated
in a layered, 1lnhomogeneous medium. This 1s one of the
foremost problems 1n modern radlophysics, acoustics, and
the physics of the earth's crust." Needless to say, no pat

solutlion has been reached.

The baslc technique that suggests 1ltself 1s the ele-
mentary ray tracing method. The ray tracing technigue has
been used to study varlous aspects of anomalous sound propa-
gation. The early estlmates of the temperature structure

near the ozone layer were based on this method(g)(3). The
procedure for estimating the possibllity of sound damage

from high energy explosions also used this method ().

*
Raised numbers 1n parentheses indicate the corresponding
reference to be found just before the illustrations and
following the text.
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To delineate the problem a 1little more clearly, the
reasonably well-behaved aspects of sound propagation 1n the
atmosphere are excluded from conslderation. In the flrst
instance, much work has been done on the effect of the atmos-
phere on the propagation of sound at ultrasonic frequencles.
In thls case, the frequencles are sufficlently high that there
1s no gquestlon of using the limlfing form or ray acoustic
approximations. The path lengths are relatively short; say,
of a few hundred meters down to the order of few meters.

The depth of the atmosphere 1nvolved 1s elther negliglible or
of the order of a few meters or tens of meters. As a conse-
quence, the atmospheric parameters may be consldered as high-
ly simplifiled. Well-known relations may be used to estlimate
the "average'" vertical distribution of wind and sound speed.
The varlation of these on stlll smaller scales then plays

the predomlinant role in the propagation problem.

On the larger scale, the major causes for refraction
earthward in the atmosphere lie at the ozone level (near 40
km in the vertical). The varlation of parameters over
layers of the order of magnitude of a few kllometers becomes
relatively unimportant. The major anomalles of the sound
propagatlion may then be traced without paylng particular
attentlon to detaills of the atmospheric parameters even
though the variations of these detalls are easlily measured --
in fact, regularly observed.

In both of the above "extreme cases,"

there 1s usually
no question but that the methods of ray acoustlcs are appll-

cable with some degree of accuracy.

When the ray method 1s applled to the problem at hand,
this basic procedure for estimatling sound intensity suffers
from two distinect disadvantages. Flrst, 1t does not always
give an estlmate of the sound intensity. Second, its appli-

cation 1in several instances 1is physlcally unsound.
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In those cases in which the ray method does not provide
a sound intensity estimate, it 1is possible fo make some kind
of an estimate on the basis of the sound scattered and diffracted

into the region concerned.

Where the ray method does give answers, it is possible to
estimate the variations of sound intensity due to the variation
of atmospheric parameters, at least in part; but it is not
possible to determine what part of the observed variation of
intensity 1s due to the variation of these parameters and how
much was due to the fact that the ray method should not be
applied at all.



Lo
B. THE RAY TRACE DESCRIPTION

The method of treatment in the following sections is based
on the following quantification of sound intensity estimation.
If the ray tracing method can be applied:

-
il

Iyfe  , £ = |r/(dr/dy,)tany,|

where

H
Il

sound intensity estimate

I, = sound intensity from spherical spreading

f = focusing factor
a = attenuation coefficient
r = source-to-receiver distance

o = initial inclination of a sound ray

The total intensity 1s then a sum of intensities over all

the arriving rays
IT = ygl

where the symbolic summation includes "direct" rays arriving
at the recelver and all rays that might arrive at the receiver

after one or more reflections from the ground.

Several situations are included in the preceding summation.
In the first place, there may be two or more direct rays
arriving at the receiver, All of these are 1ncluded. A partic-
ular example is the case of a "focus." Thls occurs at that
distance, 1r,, for which dr/dy, = O so that f 1s "infinite",
(This case is not being discussed here since it requires
special treatment.) For a distance somewhat larger than r,,
there are two rays arriving at the receiver, The intensity
values associated with each are included in the summation.
In these situations, the undetermined factor, g, is taken as
unity.
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Another situation included in the summation is that which
occurs with a ground based "inversion' of the speed of sound
and wind component. The value of ¢ + u 1increases with height
to a maximum and thereafter decreases. In such a situation,
there are rays which return to the ground associated with ray

inclinations 1§, = O to Yo =¥ . The ray Vmax 1s that

associated with the maximum va?ig (need be local maximum only)
of ¢ + u., In such a case, the ray tracing procedure indicates
that no rays will return in some interval or, if an appropriate
approximation is used, will be assoclated with a very small
focusing factor. In this situation, sound reflected from the
ground from distances r/2, r/3, r/ﬂ, etc,, may arrive at the
receiver after 1, 2, 3, etc., reflections. These rays contri-
bute to the summation, and the undetermined factor, g, includes

the reflection coefficient for the ground, etc.

When the ray description fails to provide an estimate of
the sound intensity as described above, the situation is one
in which there is a decrease of the sum ¢ + u from the ground
upward (to some level, at least). In this situation, the sound
ray corresponding to {4 = O is bent upward and no direct
sound rays are recelved (in the ray tracing technique) out to
at least some distance away (or maybe not at all). The sound
reaching the ground in this instance 1is considered to come from
two sources, that diffracted into the region and that scattered

into 1t.



C. COORDINATE SYSTEM

The coordinate system used throughout 1s a right-handed
rectangular system tangent to the earth. The (x,y)-plane is
considered as tangent to the earth with the sound source at
the origin., The z-axls is directed vertically and is considered
positive upwards. Since the propagation distance is less than
100 km, there are no corrections made for the curvature of the
earth, Some departures from this system are made, but what is
intended 1is generally clear (we hope). Such variations usually
consist of a shift in origin that permits omission of an addi-
tive constant of no importance.

Since the sound propagation is nearly planar in radial
planes through the source, the (x,z)-plane is taken in the
direction of propagation., Reference to other directions requires
a rotation of coordinates. Wind components (u,v,w) are resolved
in the above system. Wind observations are, of course, made
with respect to north for the reference wind direction and must
be resolved into components 1n accordance with the particular
plane of sound propagation being considered.
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D. NOMENCLATURE AND TERMINOLOGY

The nomenclature and termlnology used herein are strictly
that of standard good practlce 1in both meteorology and mathe-
matlics. Thils is particularly important in connection with
such terms as gradient, lapse rate, and inversion. By the
gradient, the signed derivatlve is always 1mplied; such as
df/dz for a scalar functlon of one coordinate or the vector
whose components are af/3x, 3f/3y, 3f/3z for a scalar functlon
of three coordinates. The term lapse rate 1s used 1in exactly
the sense the words would have 1in ordinary usage (and 1in
meteorological usage); 1l.e., the rate of "falling off" or of
lapse. Invarilably thils rate 1s taken 1n the vertlcal direc-
tion only. The expression 1is used only 1n reference to
temperature. The lapse rate (of temperatur ) 1s the negatilve
of the gradient of temperature 1in the vertlcsl direction. 1Lts
meteorological usage 1s easlly justified to get rid of the
incessantly present minus sign that would tag along wlth the
temperature gradlent. (This simple situatlion seems toO have
caused abundant confusion(5)(6)(7). An "inversion'" usually
applles to the temperature structure in the vertical and in-
dicates a situation in which, instead of decreaslng, the
temperature lincreases wilth height; a positive temperature
gradlent, or a negative lapse rate. The term has been used
(perhaps badly) herein to indicate a condition in which ¢ + u
increases with height up to a certain polnt (the "top" of the

* An "increasing" temperature gradient 1s used

"inversion").
only to indicate a positive second derivative, dgf/dz2 > 0;
and the term "increasing" is never used to indlcate the sign
of the gradient. When the temperature is increasing with al-
titude 1t 1s described as having a posltive gradient (or

negatlve lapse rate), etc.

*
Words that appear in quotation marks are belng used 1in a
special sense and should be interpreted in the particular
context required.
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E. OUTLINE OF TREATMENT

Empirical results on the variability of sound intensity
estimates by the ray tracing method are described in Chapter
II. The background material that was required for specification
of atmospheric variability is discussed in Chapter III. Chapter
IV contains an estimate of the variabllity of attenuation as
dependent on variability of atmospheric parameters. The con-
clusions presented in Chapter V repeat in abbreviated form
the results stated at some length in Chapters II and IV.

In order to keep the material of the chapters conveniently
abbreviated, there is a sequence of appendices followed by
the 1list of references. These contain the technical details
which, if included where the questions initially come up,
might confuse the trend of the treatment.



CHAPTER II

VARIABILITY OF SOUND INTENSITY ESTIMATES

A. RAY TRACING DESCRIPTION

Practical estimation of sound intensity at a distance 1is
usually approached by the ray-tracing method. The application
of this method dates from the ti?e gf Lgrd Rayleigh with many
26)(32

basic physical assumptions and assumptions regarding the

modifications by various authors depending on the
structure of the atmosphere. Although differences in the
ray-tracing equations lead to somewhat different results,
these differences are of relatively less importance than the
way in which the atmosphere is described and the basic
inaccuracy of measurement or variability of the atmospheric
parameters that enter into these equations, The general

ray-tracing technique is discussed in Appendix A.

The ray-tracing equations used herein are:

X2 - % =-R(sinyz - siny ) (1)
tany, = ¢ simpyfci cospr + )
tam,lyg = Cb»o SiNE,_Oz/(Cg COSCp2 + U.2) <2)



-10-

cosypr = ¢; cosp,/Tc, - (y -u,) COSe, ]
’ (3)

cospz = ¢z cosp,/[c, - (uz-u,) cosg, ]
-1 * *
R = [(ca-c,) cosp + (uz-y )1/c (z2-z, )
*
cosp = (cosp, + cospz)/2 (%)
*
c = (cy+c,)/2
where
Xz2=X, = horizontal distance traveled in the layer from

Za to z»o

¥, V2 = ray tangent angles at levels z, z»

® L,P ®_,= phase normal angles at the source and levels Z, 52,
° 2

Coy C c. », = speed of sound at the source and levels 2z, , 2

1° Tz 2

Uo, W, U, = horizontal wind speed comporents in -the plane of

propagation at the source and levels Zs Z,

R = radius of curvature of the ray in the layer from

z, to zp

The derivation of these (and other) ray-tracing equations
1s discussed in Appendix A. The basic assumptions are that
the speed of sound and wind component change linearly throughout
layer and that the wind speed 1s small compared with the speed
of sound. The distinction between phase normal and ray tangent
is maintaine%although a relatively minor point, These relations
are subject to the basic objections that may be raised to any
ray tracing method, that they do not adequately satisfy the
basic physical assumptions. This point is rather important
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and is discussed in Appendix A, also. The variability of
sound intensity estimates may be discussed reasonably without

laboring this point here,

The above equations give the horizontal distance traversed
as the ray passes through the layer from 2z, to z=2., For an
atmosphere congisting of several such layers, the distances
are added. If the ray returns to earth, the value of o
(and §) must become zero in some layer. The total horizontal
distance traversed will be twice the distance traversed to
reach the level where o = = 0;

n
r =2y, (X1+1'X1) (5)
1 =

O

where ©r 1s the total horizontal distance traveled by the ray,
and the ray reaches 1ts maximum altitude between the levels

z, and Z, 4.

The atmospheric parameters enter into the problem
directly as Yy ,u2 (wind components along the plane of the ‘
ray) and indirectly through c¢; and cz, ¢C = 20,0468 A273.15 + T*fmps )

where T 1s the virtual air temperature in degrees centigrade.

The intensity of the sound is obtained from the relation

T = I, fe™®" (6)

where I, 1s the sound intensity due to spherical spreading

and f 1is the focusing factor given by
£ = |r/(dr/ay,) tany,| (7)

in which {, is the initial inclination angle of the ray. The
factor e ¥ accounts for atmospheric attenuation of various
kinds. For the present purposes, this factor is neglected,

and the value of 0 is assigned to a .
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If more than one sound ray arrives at a point, the total
sound 1ntensity 1s obtailned by adding the 1ndividual ray
contributions

I =2 &1 (8)
i

where I, 1s the intensity due to each "ray" and g, 1s a
function of how the sound ray arrives, For direct air trans-
mission, g, = 1. (Sound ducted along the ground would require
that g, include the ground attenuation, the number of ground
reflections, etc.)



..13..
B. SPECIFICATION OF THE PROBLEM

The problem of estimating the variability of sound involves
working backwards through the equations of the preceding
section. The total intensity from (8) is dependent upon the
focusing factor (7) for the rays that return to the point
concerned. This factor (and whether any rays return at all
at this point) 1s determined from the summation (5) of the
quantities from (1) through (%),

A variational or perturbation treatment presents
difficulties. These are described in Appendix B. The
present analysis is confined to an empirical approach using
equations (1) through (8). There are severe restrictions
in this method, but the reliability of sound intensity
variability estimates seems reasonably significant. The
principal restriction lies in the basic assumption of hori-
zontal homogenelty in the atmosphere. To relieve this
restriction, the computation difficulties are increased many
fold. In addition, the basic information on variability of
the wind and temperature that would be required is not

availlable.

The specification of the problem also involves specifica-
tion of the variability of the atmospheric wind and temperature.
Since this ls reasonably important, the subject is discussed
in some detaill in Chapter III as it applies to this problem.
Three levels of variability are considered for practical
purposes.,

First, small varilability that would correspond to the
changes to be expected over an interval of a fraction of an
hour. This would correspond to estimating sound intensity
from atmospheric measurements with a time lag that would allow
only for completion of the intensity computations.

Second, moderate variability that would correspond to
changes expected over a period of four to six hours. This

would roughly correspond to a reasonable minimum planning
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time for test operations.

Third, a variability that would correspond to a time
lag of eight to twelve hours.

(See Chapter III for more eXxplicit specification in the
last two cases,)
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C. RESULTS ON VARIABILITY OF INTENSITY DUE TO DIRECT RAYS

1. Empirical Apprcach

The empilrical approach used to obtain estimates of sound
intensity variability was to compute the sound intensity for
direct rays returning to the ground at various distances from
a hypothetical source given a specific initial atmospheric
sounding. The sounding was then perturbed by a specific
amount to correspond to what might be expected at a later
time. Such perturbations to the sounding were repeated 100
times, and the results were compiled in tabular form including
the mean sound intensity level, the standard deviation of the
intensity level, and the number of cases in which no direct
rays returned at the point concerned.

Since the perturbations of the sounding were to correspond
to realistic changes that might be expected in the atmosphere,
care was taken to assure the proper interlevel correlation of
the perturbations., For short time lags, the general character
of the sounding remains unchanged, but small changes occur in
temperature and wind with a correlation distance of only a
few hundred meters. For longer time lags, changes have a
correlation distance of seven kilometers. The proper
perturbations were applied by starting with a set of indepen-
dent random numbers ( mean zero, variance one), and then
forming a set of acceptably intercorrelated random numbers
with the proper standard deviations by means of a linear
transformation of the initial set. (See Appendix C for
details.)

2. Results

a) Illustrative Cases
Figures 1 through 7 illustrate several case of the
variabllity of sound intensity estimates (direct rays) due to
the variability of atmospheric wind and temperature. Each
of these figures is divided into four parts: a, b, ¢ and d.
For each figure, the parts illustrate the following information:
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part a - Graphlcal representation of ¢ +u as a
function of altitude. (c = speed of sound, u = wind com-
ponent in the plane of propagation, both meters/second.)
Altitude is plotted vertically in meters,

Part b - The percent of occasions when no ray returned
directly at the distance shown by the abscissa (kilometers).
Curves along the bottom indicate a ray returned to the ground
in nearly all cases, near the top in almost none of the cases.

Part ¢ - The standard deviation of the sound intensity
level (in decibels) for those occasions when a ray returned
at the distance shown by the absclissa (kilometers),

Part d - The average sound pressure level (decibels)
for those occasions when a ray returned at the distance shown
by the abscissa (kilometers). The sound pressure level
indicated 1is tmt for the rays that return directly to the
point indicated. No correction is made for attenuation. No
correction is made for return of sound after one or more
reflections from the ground between the sound source and the

distance indicated.

In parts b, ¢ and d, there are three curves shown
corresponding to different levels of atmospheric variability:

Solid with dots: corresponds to variabillty

expected over a very short time
(materially less than an hour).

Dashed: corresponds to one-fourth the natural
variability or to a time lapse of
approximately four to six hours between
sounding and sound transmission,

Solid: corresponds to one-half the natural
seasonal variability or to a time lapse
of eight to twelve hours between the
meteorological sounding and the sound

transmission.
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i) Case I, Figures la, 1lb, lc and 1d

The variation of ¢ + u with height shown in
Filgure la indicates a rapid increase of c¢ + u with height
from the ground to near 1000 m with irregular variations of
¢ + u above characterized by a very weak trend to larger

values at higher elevations.

The fraction of rays returned to the ground at distances
to near 12 km is nearly 100%. At distances from 15 to 20 kam,
few rays are returned due to the fact that the parameter c¢ + u
(Figure la) shows a well defined local maximum near 1000 m. At
larger distances, the proportion of returning rays increase
steadily due to the increasing trend of c¢ + u with altitude

at higher altitudes.

The standard deviation of intensity in the range from
13 to 30 km (Figure 10) is unusually large in all cases
(10 to 20 db) with wide variation between the three levels
of atmospheric variability. This reflects primarily the fact
that there were relatively few cases of returning rays.

ii) Case II, Figures 2a, 2b, 2c¢ and 2d

Reference to Figure 2a indicates the presence
of a reasonably strong "inversion" with the maximum of ¢ + u
at 900 meters, but with a secondary small "inversion" at the
ground. In the neighborhood of 4000 meters and above, the
values of ¢ + u exXceed these at lower levels and are increas-

ing with altitude.

The trend of the three curves in Figure 2b clearly indicates
(1) the effect of the small inversion near the ground by the
presence of a high percentage of returning rays in the range
from O to % km, (2) the effect of the peak of ¢ + u at 900 m
in returning rays in the range from 9 to 14 Im, and (3) the
effect of the upper increase in ¢ 4+ u at high levels in
the returning rays at distances beyond 30 km.
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iii) Case III, Figures 3a, 3b, 3c and 3d

Figure 3a indicates a steady decrease of
¢ + u from the ground to near 1000 m followed by a reasonably
rapid increase to near 1800 m and by a slow increase from
that level upward,

The fraction of cases wWith rays not returning as a function
of distance (Figure 3b) is large to near 21 km due to the
marked decrease of ¢ + u near the ground., In the case of
smallest variability, only one case occurred with rays returning
at distances of less than 21 km. The number of cases of
returning rays in this interval increases with increasing
basic variability magnhitude. The local weak maximum of ¢ + u
near 2000 m brings rays to the ground between 25 and 30 km in
a majority of cases, the most for the small variabllity
situations., Since the maximum near 2000 m is only slightly
above ¢ + u at the ground and since ¢ + u 1increases
weakly above the 2000 m level, the proportion of cases of
returning rays beyond 30 km is only near 60%.

The large peak in the standard deviation of the sound
pressure level near 22 km (Figure 3c) reflects the small data
sample in the case of weak basic variability.

iv) Case IV, Figures 4a, 4b, b4c and U4d

The characteristics of ¢ + u in Figure ta
indicate elevated refraction with rays reaching their maximum
above 1000 m, Since ¢ + u decreases steadlly immediately
above the ground, rays return to earth at some distance from
the sound source,

The fraction of rays not returning earthward (Figure 4b)
is nearly 100% up to near 13 km. Beyond 23 km, nearly all
cases indicate rays returned to earth (the effect of the
strong increase of ¢ + u at upper levels in Flgure 4a).

In the zone from 16 to 18 km, a large majority of cases
showed ray returns.



_19_

The disconnectedness of the dashed curve and the
termination of the dot curve in Figures 4c and 4d reflect
the fact that none or only a few cases of returning rays

occurred at distances less than 15 km.
v) Case V, Figures 5a, 5b, 5¢ and 5d

The values of ¢ + u decrease irregularly to
near 1000 m (Figure 5a) and increase from that level upward,
the increase above 2500 m becoming rapid. The situation is

gimilar tTo Case IV,

Returning rays are generally absent at distances less
than 21 km (Figure 5b), some cases occurring for the intermediate
and larger variability levels, but none for the small variability
level, At distances from 23 to 30 km, there are returning rays
in all cases. Beyond 30 km, the fraction of returning rays

decreases with increasing distance.

The absence of returning rays 1s reflected in Figures 5c¢
and 5d by the fact that the dot curve for the smallest
variability situation is not shown in the range from zero to
21 km.

vi) Case VI, Figures 6a, 6b, 6¢ and 6d

The values of ¢ + u 1increase irregularly from
the surface to 2500 m (Figure 6a) and decrease above that
level, The overall rate of change of ¢ + u with height
throughout is very small, but in some levels, the rate of change

1s reasonably large.

The fraction of cases in which rays returned at given
distances is near 100% beyond 17 km for the cases of small and
moderate atmospheric variability, but near 80% for large atmos-
pheric variability.

vii) Case VII, Figures Ta, Tb, 7c and 7d

The values of ¢ + u (Figure T7a) increase
from the ground to near 3000 m with a secondary local maximum
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near 1500 m. Above 3000 m, the value of ¢ + u decreases
steadily. The situation is similar to Case VI, (Figure 62).
The feature that might distinguish the two cases 1s the fact
that, while in Case VI there were several minor fluctuations
in ¢ + u with height, in Case VII the prominent secondary
maximum near 1500 m 1s the only feature that Jgisturbs a
reasonably smooth trend of c¢ + u with height. The total
magnitude of the range of ¢ + u 1s reasonably small.

The fraction of the time that rays returned to the ground
at piven distances never reaches 100% (Figure Tb), but in all
cases, it 1s largest near 24 km, presumably due to refraction
below the secondary maximum of ¢ + u near 1500 m.

b) Conclusions

The seven illustrative cases discussed above (Figures
1 through 7) cover a wide range of atmospheric conditions for
which direct rays are returned earthward. The range of
variability assigned to the atmospheric parameters samples
their variability over a span of from a fraction of an hour
to in the neighborhood of half a day.

There are several features of the variability of sound
intensity estimates that characterize all of these illustrations.
The first of these 1s the division of the intensity estimate
problem into two distinct parts:

i) Whether or not there will be any rays returning
directly to a given distance, and

ii) When there are rays returning directly at the
given distance from the source, what will be the

variablility of the sound intensity?

In the first instance, under conditions where ¢ + u
aloft is of the order of 10 to 20 m/sec larger than the values
near the ground, there are zones where rays return to given

distances in nearly all cases, On the other hand, in these
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and the other cases for any fixed distance, there are some
instances of direct rays returning earthward. Consequently,
the presence of directly returning rays at a given point is
essentially a probability problem. The probability being
large at some distances, small at others (and seldom zero in

the cases shown).

There seems to be no consistent systematic connectlon
between the size of the atmospheric variability lmposed on
wind and temperature and either the likelihood of direct rays
returning at a gilven distance or the standard deviation of

sound intensity when rays are returned.

The standard deviation of intensity generally lies in
the neighborhood of 5 db. In a general way, 1t appears that
if the likelihood of returning rays is not large, the standard
deviation of intensity of what rays are returned may be some-
what larger than- otherwise., The occurrence (number of cases)
of the standard deviation of sound intensity estimates
(direct returning rays, decibels) by class intervals against
the fraction (percent) of cases in which direct rays failed
to return at given distances is shown in Table TI. Distances
ranged from 5 to 50 km. When rays return in nearly all
cases (04X ), the largest number of éases show a standard
deviation of intensity estimate in the 2.5-5.0 db range.

As the fraction of cases where rays fall to return increases,
the largest number of cases moves into the 5.0-7.5 db range.

It is tempting to form a regression of "sigma" on the
fraction of cases, but the scatter of the cases and irregularily
of detaills of their distribution clearly indicate that 1t
would be of little or no significance (wlth the possible
exception of the case of the smallest variability level).

The distribution of cases in the column of "totals"
indicates that the maximum for the standard deviation of sound
intensity estimate (direct returning rays) moves from the 2.5-
5.0 db range at the largest variability level. This is what
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TABLE T

Occurrence of Standard Deviation of Sound Intensity Estimates (Decibels) -
as a Functlon of the Fraction of Cases in which Direct Rays Failed to
Return to Given Distances (Percent), Distances Range from 5 to 50 km.

Standard % Cases Direct Rays Falled To Return
Deviation 0-20 20-%0 40-60 60-80 80-98 Total

Smallest Variabllity Level

0.0-2.5 51 2 2 2 60
2.5-5.0 68 1 2 1 85
5.0-7.5 31 21 21 7 5 85
7.5-10.0 1 3 12 5 11 33
10.0-12.5 3 1 3 11
12.5-15.0 1 13 14
15.0-17.5 1 1
Total 152 Le Lo 16 35 289
Moderate Variability Level
00.0-2.5 36 3 L 3 18 64
2.5-5.0 72 11 7 Z 2D 119
5.0-7.5 17 20 28 1 2 81
7.5-10.0 1 6 2 8 2 20
10.0-12.5 2 3 9
12.5-15.0 1 1
15.0-17.5 1 1
17.5-20.0 8 8
20.0 6 6
Total 126 4o 48 32 63 311
Largest Variability Level
0.0-2.5 L 1 L 1 1 11
2.5-5.0 22 6 6 10 6 81
5.0-7.5 55 43 18 22 182
7.5-10.0 9 12 Y 11 36
10.0-12.5 2 10 12

Total 101 71 67 4o 4o 322
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one would expect. This shift is weakly indicated and the

dispersion is large in all cases.

With regard to the number of cases in which rays fail to
return at a given distance (raw totals for each variabillty
case), the high percentage of returning rays (0-20 column)
decreases steadily with increasing degree of atmospheric
variability, but only from about half to one-third of the
total number of cases. This is expected. The large number

of cases in each of the other row categories clearly indicates
a moderate probability of returning ray at any given distance,
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CHAPTER ITIT

VARIABILITY OF METEOROLOGICAL PARAMETERS

Several aspects of the basic variability of meteorological
parameters with application to the problem of the variablility
of sound intensity are discussed in this chapter. The sound
intensity estimates from ray tracing methods depend on the
parameters ¢ and u, ¢ = speed of sound, u = wind speed in
the plane of propagation. The speed of sound 1s dependent on
several meteorological parameters, the most important of which
is the temperature. These are discussed in the first section
below, Since the azimuth of the sound propagation plane may be
selected at will, the wind component, u, 1s determined from

both Uy and u the two orthogonal components of the wind

NS’
vector,

The range of interest in the variabilility of the meteorolog-
ical parameters extends from the climatological variability to
the micrometeorological scale of a few minutes and a few miles
in distance, It covers the entire range of the ray paths,
which includes the region from the surface to above 20,000
feet (5 km).

In addition to variability in the strict sense, 1t is also
necessary to have a rather clear idea of the errors of measurement
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of the atmospheric parameters together with the accuracy with
which a method of describing atmospheric conditions actually

represents the atmosphere.

A baslc problem that is involved in ray tracing estimates
is the space variation of atmospheric parameters over the ray
path. It i1s supposed that the measurements made (near the
source, say) actually represent conditions without error. The
path may extend over a distance of many kilometers so that on
the downward leg conditions may be different from those on the

upward leg.

Measurements by radiosonde techniques are those of the
parameter values along the path of the balloon, which may go in
a direction quite different from that of the ray concerned.
Consequently, the distance induced errors may be largest at
the top of the ray path where errors are most critical.

There 1s always a time lag in a practical situation to
permit the accumulation of data, computation of sound intensity

estimates, and last minute declsions as required.
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A, GENERAL CONSIDERATIONS

1. The Dependence of the Speed of Sound on Atmospheric Parameters-

The speed of sound 1s related to the temperature of the air
and its molsture content through the relation

¢ = (yR,T*)® ~ 331.6(T*/273)%

ratio of speclific heats

<
I

Ry gas constant for (dry) alr

T* = the virtual temperature (°K)

The virtual temperature is introduced to make possible the use
of the gas constant for dry air instead of using a gas constant
for moist air, a variable quantity depending on the amount of

moisture., Thus,
T* = T(R, /Ry )

where T = absolute temperature, R, = gas constant for moist

W

air, or
™ = T/(1 - 3e¢/8p)

(3/8 =1-5/8 =~ 1-0.6221 = 0,3779 where 0.6221 is the specific

gravity of water vapor as compared with that of dry alr at the

(7a)

same temperature and pressure } where

e = partial pressure of the water vapor

P total pressure of the damp air

The partial pressure of the water vapor is related to the
relative humidity and the temperature
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e = He, (T)

where U 1is the relative humidity and e, (T) 1s the saturation
pressure of the water vapor at the temperature of the air,

Variations in the speed of sound are related to variations
in both temperature and relative humidity, thus

26c/c = (sT/T)[1 + T*H(3e, /Bp)(de, /e, dT)] +(T*/T)(3e, /Bp)(sH).
Using nominal values, this is approximately
25c/c =~ (5T/T)(1 + 0.074H) + 0.0038(sH).

The change of relative humidity from 1.0 to 0.0 would bring

about a change of the speed of sound equivalent to a 1° change

of temperature. The effect of temperature change reflects a

small correction due to the fact that saturation pressure increases
with temperature, 7.%% at H = 1 (100% relative humidity).

In terms of vapor pressure changes
esc/c = §T/T + (T*/T)(3s¢/8p).

Since T¥/T = 1 and if p ~ 1000 mb, then for se ~ 10 mb,
(an extremely large change) the last term amounts to 0.003 or

that due to about 1° C change in temperature,

2. Varlability of Meteoroclogical Parameters

The variability of meteorological parameters involves several
considerations and may be made a complex subject. Some of the
basic considerations are discussed in this section to clearly
define the limitations and restrictions of the analysis that
follows.

The varlability of a meteorological parameter 1s loosely
described as a measure of how and how much a parameter varies



-28-

as a function of time difference, coordinate difference, level
difference, etc. On the basis of these ideas, a fundamental
characteristic of the problem is two values of a parameter, say
U, at two points 1 and 2, the individual point values being
denoted by U and U,. (We exclude the case where U, and

U, may be different parameters as being outside our present

area of applications.) The points 1 and 2 may differ in time
or space coordinates or both. The problem then consists of the
following =-- 1If the value U; 1s known, what may be said

about the probability distribution of U, when the coordinate
values are specified?

It is readily seen that such a problem may be greatly
extended and generalized. To keep the situation reasonably
simple, we consider only the mean values and second moment
parameters (standard deviations and correlation coefficients or
variances and covariances)., These quantities carry with
themselves an implication that the probability density functions
concerned are Gaussian (normal). This is by no means the case,
but not enough is known about their non-Gaussian character to
be intelligently applied to the situation at hand.

One more complicated situation will be considered. If 6]
is replaced by the ensemble of meteorological information of
the past, how well does a "forecast" of U,, say US , differ
from U, 1tself?

In the following sections, some aspects of the variabllity
of meteorologlcal parameters in general are discussed. It is
pointed out that two different quantities are required for the
description of atmospheric varilability in the simplest terms,
the variances or standard deviations of the parameters at a
specific level and the covarlances or correlation coefficients
of the parameter between levels,

a. Variation in Time or Distance

The variatlon of a wind component or temperature
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difference with time or distance or both may be expressed as a

mean square difference:

0'2 = (Ug_U]_ > = Eg - 2(1).1112) +_1.112 = 21,].7 (1 - I’)
and where w = U; - U and uz = Us - U are departures from

the mean U, and where the values of time (or distance) 1 and
2 are indicated by subscripts. If it is assumed that

T =& - T - o

(i.e., the standard deviations are time or distance invariant),
the last expression follows where 1r 1is the correlation
coefficient. The correlation coefficient is a function of time
(or distance) and has a definite functional form depending on
the difference At = +t5 - t ¥, Consequently,

62/08 = 2(1 - r(at) ).

The correlation coefficient function may be written in the

(7o)

form

r(at) = 1 - A[at|® + |at|%s(at)

where A 1is a constant, o 1s a parameter such that O <'a < 2
and §(At) 4is a function that converges uniformly to zero in
At, Then

o2 = 205 [A + 8(at)] [at] .

* These specifications amount to considering U(t) as a
statlonary homogeneous process. This is not exactly the
case in the atmosphere,
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If the last term in the above is neglected, then
o = 0o V2A [At‘a/z .

The preceding form for the correlation coefficient is theoretical
in that it is assumed that there are no basic errors of observa-
tion. A more realistic form is

Ieal kr(At)

where 0O < k< 1 and k 1is a measure of the observational
errors as compared with the natural variability of the parameter
concerned. In thls case, the variance of the difference is
expressed as

02 = 202 [(1 - k) + kA|at|* + --- 1 .

For reasonably accurate measurements, k 1s nearly 1 so that
the first term in brackets is small (which in part explains why
it is overlooked).

The values of 5 depend on the nature of the process
that gives rise to variation of the parameter, wu. It may be
shown that if the process is differentiable in time, then,
a =2, If the value of g 1is less than 2, considerable care
should be taken to inspect the physical processes involved.
For example, for o = 1 the process may be one that is plece-wise
constant with random jumps. The standard textbook example 1is
that of a process that alternates at random between two arbitrary
values.

b. Scales and Errors

The nature of the measurement conditions occasionally

limits meteorological measuring technique so that the error of
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measurement cannot be ignored. In addition, the atmosphere is
never in a steady state (constant parameters) so that detailed
measurements are not repeatable. The size of the disturbances
that bring about this constantly varying condition ranges in
horizontal size from an appreclable fraction of the circumference
of the earth to a few millimeters., The description of such a
range of scale is properly done by spectrum analysis. The
application of such a treatment to the problem at hand is
awkward, In the interest of simplicity of treatment, the scale
representation is thought of as dichotomous. Consequently, an
atmospheric parameter is considered to consist of three additive

parts
g = U + 0, + U,

where U, = large scale part, U, = small scale part, U, =
error, The first will be considered to have a non-zero mean
value U = U, and the other two will be thought of as having
zero means. Then

U=0U+vy +1u + u

where the lower case letfers represent departures from the mean.
If the mean square difference 1s formed in this instance, then

02 = (Ug -Ul 52

[(UZ'U]_) - (u-) + (UZ"UQ)]Z

Il

[(UE'Ul) + (Uuz_ual) + (ubz_ubl) + (ucz-ucl )]é
so that

62 = (Us-0, )® + 02 + of + o2
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The cross products with Uz - T, drop because (uw, -u, ) = O,
etc., and the cross products of lower case terms drop because
it is assumed that the values in each category are independent
of those in any other category.

This description of the wvariability of U leaves much to
be desired, but accounts for more than is really known about
atmospheric variabllity excluding a few highly specialized
studies,.

One particular weakness 1s the treatment of the error
term. Such an error descripticnh actually describes only a
small fraction of the error situation. For example, errors
that result in a blas are not accounted for. This type of
error 1s reasonably common in some meteorological data,
particularly observations from atmospheric soundings to high
altitudes, Fortunately, we are interested in only the lower
3 to 5 km of the atmosphere where such a blas 1s small or
negligible.

C. Covarilances and Correlation Coefficients

The basic correlation coefficient, r, of section a,
is defined from the relatlion

01027 = (Ul _ﬁl )(Uz —Uz)
02 = (U,-U, )2, o2 = (U2-U2)%
where the bar over the symbols indicates an appropriate mean

value (expectation).

The subdivision of U of the previous paragraph leads to



2 2 2 2 2 2 2 2
o = 0 + o + o 02" =0 + o + o
1 al b1 cl ’ a5 b2 ¢ 5
and to
0, 0.0y = u + u, u + u, U .
1 2% 0 uul a2 bl b2 cl cz

The final term

is set equal to zero on the basis of the assumption that the
errors 1n measuring U at points 1 and 2 are independent.
Now 1let

define the correlation coefficient for the large scale part,
r, , and the small scale part, r, . Then

0,0y =0, 0, 'y + o, 0, T
1Ya-0 a a2a b1b2b

1
so that

ro = (00 /o )(oa /o )r. + (05 /0 ) on /o v, .
17 2 1 2

Each of the ratios (in parentheses on the right-hand side)
has a form like
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(00, /307 = o /(0. 2+ oy %+ 0. 7)

which is numerically less than 1. If the observatilons had been
made without error, o, = o, = 0, the corresponding correla-
2

1
tion coefficient would be indicated by the symbol r,.
d. Reconstruction of a Sounding

Let U, represent a sequence of values of U as observed
from a meteorological sounding. The serial values of 1 = 1,
2, ---, indicate the levels at which the parameter U 1s observed,
Z,. It i1s required to construct a hypothetical sounding, U,¥,
that is similar to the given sounding but which differs from it
in a way that allows for the basic variability of the atmosphere.

Let
ufF = U, + y

where u, is an increment added to U, to glve a new value Uf.
The mean square value of this increment is

If the variation from U, is assumed to be described by a
Gaussian (or normal) distribution, the addition of a random
number at each level, 1, with zero mean and standard deviation
o, would be satisfactory. On the other hand, the numbers to be
added at the different levels are not independent. 1In other words,
the random increments, w,, at the various levels must be
correlated with each other in a way that describes the varlability
of the atmosphere. In other words, if 1 and J are two levels,
then

WUy = 0.0y,
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where 1r,, 1s the coefficient of correlation between u, and

u The problem is then to construct a sequence of values

‘1 .

u; 1in such a way that each has a standard deviation o, but

so that they are interrelated with a given correlation matrix

Tyy o
There are two common methods to construct sequences of

numbers with the required properties from a sequence of

independent random numbers with zero mean and unit variance;

by

i) moving averages

ii) Dby linear equations

The method of moving averages is formalized by the

statement

k

ui/gi = E ay Xy+4yq

j=1

where x ., are members of a sequence of k + N random numbers,
(N = number of levels requlred, 1 = 1, ---, N). The values of
k and of a;, ---, a, are to be determined in such a way that
u, and u, are correlated in the specified manner, This

method has the advantage of simplicity in application but the
problem of finding the a,'s for a given correlation coefficient
matrix, r;,, 1s not easily solved in general. (Appendix c)

The linear equations method consists of expressing the
values of u,/0, 1in the form

N

u /0, = E ay 4 X,

J=1

where the x;'s are N independent random numbers with zero
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mean and unit varience. The coefficients, ais, are to be
determined in such a way that u;, u, are properly correlated,
Methods for determining the coefficlents, a,,, are discussed

in Appendix C,

Matching levels of the sounding with those for which the
correlation coefficient matrix are known must be made for
practical applications., This is handled in a reasonable manner
by forming the sequence wu, for the levels corresponding to
the correlation coefficient matrix and then interpolating
for the levels indicated in the sounding. In terms of correla-
tion coefficients at the sounding levels, thils procedure is
equivalent to using correlation coefficients interpolated from
the correlation coefficient matrix.
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S
B, CLIMATOLOGICAL VARIABILITY, WIND AND TEMPERATURE

The climatological variability of an atmospheric parameter,
U, consists of a measure of its standard deviation at a point
together with the two point correlation coefficients (or
covariances) relating the quantity at points 1 and 2, where
1 and 2 may differ in time, altitude, geographical coordinate,
or any combination thereof as required. The detalls of the
second group of parameters 1s generally very restricted for
the atmosphere. The adjective "climatological" refers generally
to the mean value with respect to which the quantities concerned
are computed. The usual usage (adopted herein) is that the
approprlate mean is based on a substantial period of record

(several years).

The meteorological parameters do not have constant means
so that the meaning of the terms 1s further restricted to
eliminate or to adequately account for such items as the annual
and diurnal changes that occur. The parameter mean 1s not only
a function of level and location, but also a function of time
(of day and hour). (Long term trends are neglected.)

1. Standard Deviations of Wind Components and Temperature

Standard deviations of meteorologlcal parameters in the
neighborhood of the Marshall Space Flight Center were extracted
from standard climatological tabulations and are shown in the
accompanying table. The climatological standard deviation of
temperature must be modified to an approximate speed of sound
value for comparison purposes. This may be estimated from

Ac = (c¢/2T)(AT) = 0.61(AT) .

The wind and temperature standard deviations display the
same sort of varlations with season, but show different variations
with altitude. The standard deviations of wind increase with
altitude while those of temperature decrease. The approximate



Standard Deviations of Wind Components and Temperatures Estimated
in the Neighborhood of Huntsville, Alabama (8), (9).
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TABLE 1T

The Wind

Observations Were Those of 1500 GMT While the Temperatures Were

Those at 0300 GMT.

Winter

10.6
12.0
b4

Spring

5.3

11.8
10.4
3.2

Summer

2.7

N U
= o

*

N WU
o H =

Autumn

11.5
9.8
3.5
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equality of the standard deviations of the two wind components
is evident. (The individual component standard deviations are
to be used and not the vector standard deviation.) Though the
wind component and btemperature standard deviatlons are of the
same order of magnitude, the numerical value of the temperature
"sigma" is roughly half those of wind and when adjusted by the
factor 0.61 to convert to speed, they are reduced to % to + the
wind values. Conseqguently, the wind may be expected to play
the dominant role in introducing errors in intensity of sound
estimates on a climatological or forecast basis.

o, Interlevel Wind Component Correlations

The correlation coefficients for wind components at various
levels are reasonably avallable for stations throughout the
United States either at standard pressure levels or at standard
altitude levels. Tables IV and V illustrate values that may
be reasonably representative of values pertaining to the area
near Huntsville, Alabama. The correlation coefficients are given
at standard pressure levels. The conversion of altitude levels

on the basis of a standard atmosphere 1s shown in Table TIITI.

3. Interlevel Temperature Correlations

Data on interlevel temperature correlations are not as
readily available as for wind. The example shown in Table V
pertains to combined data from Washington, D. C., and Tampa,
Florida. The character of the interlevel temperature correla-

tions differs radically from that of the wind components.
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TABLE IITI

Standard Pressure Levels in Terms of Altitude Based on a
Standard Atmosphere

Pressure Level Altitude Pressure Level Altitude
(millibars) (kilometers) (millibars) (kilometers)
1000 0.11 250 10.36
950 0.54 200 11.79
850 1.46 150 13.62
700 3.01 100 16,64
600 k.20 80 17.64
500 5.57 50 20.64
Loo 7.18 20 26.59

300 9.16 10 31.20
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TABLE TV

Interlevel Wind Component Cor?iestion Coefficients (Interpolated
from Nashville and Montgomery ). The Level is Given in
Millibars (Table III for Conversion to Kilometers), Standard
Deviation in mps. The Interlevel Correlations for the East
Pointing Component Are Shown Above the Diagonal (1.000) and

for the North Pointing Wind Component Below the Diagoral,

SUMMER
LVL 950 850 700 500 4oo 300
SD 5.4 5.8 6.6 8.4 9.7 12.0
950 5.4 1.000 .748 Lol ek Lokk .148
850 6.4 .782 1.000 .707 .53% L4133 .230
700 7.0 .530 .738 1.000 .758 661 .552
500 9.0 L430 .5ho .728 1.000 .854 .ThO
400 10.5 .323 L 634 846 1.000 .841
300 13.1 231 .330 .532 .720 .830 1.000
WINTER
IVL 950 850 700 500 Loo 300
SD 5.2 5.7 5.9 6.8 9.2 11.6
950 5.6 1,000 776 .4o8 276 .160 ..016
850 6.4 770 1.000 L607 o7 .302 .180
700 7.4 .598 T 1.000 .630 547 Jso
500 8.8 ol 572 716 1.000 .814 .660
400 10.8 .330 .4o8 .652 824 1.000 .837

300 14,0 232 .388 .550 . 750 .860 1.000
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TABLE V

Interlevel Temperature Correlations (
Washington, D, C., and Tampa, Florida
in Kilometers and Standard Deviations in Degrees Centigrade,

Level
Sfe

QO O =N

Level

Sfe

coO O &= N

SD

N O R W
w WO N N O Ww

SD

- I R VI B )
* . * L]
H O 1 NN 0O D

Sfe

1.000
.591

355
.266

278
.290

Sfe

1,000
s 731
.590
L1485
436
JH13

1.000
.800
.520
.507
.50%

1.000
.858
.700
.636
.560

SUMMER
2

1.000
.658
.655
.670

WINTER

2

1.000
.828
.702
.638

?ngaged Values for

).

1.000
.786
664

1.000
.878
.690

Levels Are Given

1.000
.860

1.000
.835

1,000

1.000
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C. CHANGES OF WIND OVER SHORT PERIODS

1. Wind Variability Over Shorter Periods
(12)
3

In a recent study by Nou the changes in wind for
periods of six to twelve hours are reported. The results are
summarized in the following table for Shreveport, Loulsanna.

As 1s the case for nearly all tabulations on the varlability of
winds, the data are not what is needed, and what is needed can
be deduced only by using drastic assumptions. The columns
headed MD are the means of the deviations without regard to
sign, The columns headed RMS are the corresponding root mean

square values,

TABLE VI
Some Wind Variability Statistics for Shreveport, Louisanna(lg)
Direction Speed Vector
(Degrees) (mps ) (mps)
MD RMS MD RMS MD RMS
ALL LEVELS AND SEASONS
6 hrs, 19 28 3.8 5.2 6.2 7.6
12 hrs. 25 36 5.0 6.6 8.4 10.1

ALL LEVELS BY SEASONS

6 hrs. Jan 12 18 4,6 6.4 7.3 9.0
Apr 14 20 b5 6.1 Z'3 8.2
July 35% 51% 2.5 2.2 .5 5.
Oct 16 25 3.5 .9 5.6 7.0
12 hrs. Jan 17 26 6.0 8.0 10.1 12.2
Apr 19 26 6.0 1.9 9.9 11,
July L3  50% 3.1 .0 5.8 6.8
Oct o0 32 6.5 6.5 7.9 9.6
ALL SEASONS BY LEVELS
6 hrs. 3 kn 28 I3 2.8 3.9 5.0 6.1
6 kn 20 32 3.5 .8 6.0 7.4
12 hrs., 3 kn 37 51 2.7 4.9 6.6 7.9
6 kn 28 Lo L7 6.2 8.0 9.7

*Unusually large values
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TABLE VII
Wind Variabllity Measures(13)

Average Time Wind Direction and Speed Changes as Function of
Wind Speed

Average Speed (mph)

6.7 15.7 2.6 33.6
Direction (°/30 min) 12,0 6.0 5.0 3.0
Speed (mph/30 min) 0.7 1.1 2.2 2.7

(No significant changes with height,)

Average Horizontal Wind Speed and Direction Changes as Function
of Heilght

Height (10° ft)
3 6 10 15 ol 36

Direction (°/11 mi) 12 10 6 4 b 3

Speed (mph/11 mi) 2.7 1.8 1.1 1.3 2.7 2.2

Wind Variation With Time and Distance

Time Std. Dev. Distance Std. Dev.
1/2 min, 1.3 mph 1/2 miles 1.3 mph
5 min 1.7 3 1.9
30 2-5 5 2.5
1 hr, .75 70 7.75
2 6.0 112 10.25
i 7.25 300 18.75
8 9.75 75 19.75
12 12.0 50 22.25
24 18.0 570 26,5
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TABLE VIII

Summary of o, (Vector Std. Dev.) (mi hr ') in Lower 500 Ft,(15)

Time Interval (min)

Speed o 5 T 5 g
5 mph 0.8 2.4 2.9 3.2 3.0
10 1.3 3.5 4.2 4,7 5.0
15 1.8 4.6 5.5 6.2 6.6
20 2.3 5.6 6.7 7.6 8.1

25 2,8 6.7 8.0 9.1 9.5




“h6-

The differences are for time intervals of six and twelve hours

and are those of the wind direction, wind speed, and the magnitude
of the vector wind difference, If we assume that the differences
of the wind vectors is circularly and normally distributed (not

true), then the root mean square component differences will be

V 2/2=(0.707)

times the value given in the last column (Vector, RMS). Unfor-
funately, the subdivision by level and season is not made. To
get seasonal values by level, one must make assumptions about
the seasonal variation., If the seasonal variation at 3 and 6 km
is assumed to be like that at all levels combined, the following

estimate seems reasonable:

O1eve1 = Gseason /Gyear ( v 2/2 )Olevel )
sSeason

A comprehensive review of wind variability was made by

(13)

Baginsky, et al. some results of which are shown in Table

VII. Durst(14) has described the wind variability in time as

0F = 20%(1-r,) , 1, = e , a=6.9x 10 °

where 0 1s the climatological vector standard deviation and
Oy 1s the root mean square vector difference after an elapsed
time t. The formulation above holds reasonably well for 5
minutes < t < 2% hours with little variation with altitude to
above the 500 mb level. Some data on variability near the
ground for short time periods is given in Table VIII from

(15) |

Bellucci .
a, Some Limitations of Wind Variability Data

Data on the variability of wind is usually given in
terms of mean variability of directilon and/or speed and the mean
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or root mean square vector variability. None of these nor any
combination describe the variability of wind wilth distance in

an adequate way. This 1s because no account is taken of the
eddy structure of the atmospheric winds. This must be accounted

for by considering the wind components separately in terms of

suitable reference directions. This 1s illustrated in regard to
distance variability in Figure 8, in which the mean square
difference of components 1is shown as a function of the differene
in distance for the longitudinal (along flight path) and
transverse (across flight path) directions 1 . These data
pertain to levels near 30,000 feet but not in the Jjet stream.
The larger size of the transverse variation as compared with

the longitudinal 1s independent of direction chosen and 1is a
characteristic of atmospheric eddles. This means that the
distribution of the wind vector differences is not circularly
distributed, a fact that is ignored completely where only the
mean or root mean square vector difference is tabulated. The
RMS transverse component appear to be approximately\/7§ times

the RMS longitudinal component.

In terms of the expressions.at the first of this section
for the mean square differences, the formulation of the
correlation coefficient is different for the two components
of the wind.

o, Temperature Variability Over Shorter Periods

Cox(17) indicates values of temperature variation from 1.0
to 3.5%° C., over a half-hour period with observatlions made every

6 seconds.

The variation of temperature near the ground (standard
meteorological exposure) 1is extremely complex. The removal of
the diurnal variation helps to simplify the situation somewhat
but great complexities remain. These complexitities are brought

(18

out in the discussion of Godske concerning the temperature

at Bergen and Oslo, Norway, over a 25-30 year period. For
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example, the diurnal variation of temperature as measured by

the standard deviation varies on an annual basis from 2.6° C.

to 3.8° C., On the other hand, the amount of diurnal variation
depends on the time of day used for the comparison, In April

it is largest near midday (13 hcurs, 3.8° C.) and a minimum at
midnight (Ol hours, 3.0° C,), while in January it is least at
midday (3.1°) and largest at night (3.7°). The correlation of
temperature as a function of time lag has the same character-
Istics in that 1t depends not only on the time lag, At, but

also on the time of day, t, from which the lag is measured,

r = r(At, t). As an example, for December, r = 0,77 = r (1 day,
t), rather uniformly through the day, but in April, r(1 day, 19
hours) = 0.75, while r(1 day, 06 hours) = 0.66, and in September,
r(1l day, 06 hours) = 0.48, while r(1 day, 19 hours) = 0.67. If
one roughs in an experimental correlation coefficent of the

form exp(-at), then 1.5 < a < 0.65 (days—l)

temperature variation (even after removal of annual and diurnal

. The surface

effects) is quite nonstationary.

Gossard(lg) indicates that at altitudes from 1,000 to
3,000 feet on the Southern California coast, the RMS temperature
fluctuation over a four minute period. is about 0.26° C, with a

scale length of about 250 feet., The corresponding RMS vapor
pressure fluctuation is about 0.4 mb, Crain, et al.(eo),
indicate scale size of a few hundred feet at altitude of near
1,000 feet decreasing to 5 to 15 feet near the surface. In the
above, the scale size 1s used in two different senses. 1In
Gossard's work on balloon measurements, the scale size is
actually a time scale which is converted to distance on multi-
plication by the wind speed. It does, however, conform roughly
to scale size obtained from aircraft measurements of Crain, et

al.(go).

Definitive measurements of temperature variability in the
upper atmosphere were treated by J. S. Sawyer(gl) in such a
way that the required variabllity parameters are explicitely
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given. The standard deviations of the temperature fluctuations
were found to be 0.5° F. under normal lapse fate conditions and
0.75° F. for inversions. The correlation coefficients as a
function of helight separation were found to be 0.82 (400 t),
0.57 (800 ft), 0.2% (1200 ft), 0.08 (1600 ft), 0.00 (2000 ft

and larger).
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D. DEPARTURE FROM EXPECTED CONDITIONS

The accuracy of expected wind and temperatures is measured
in many ways,., The most convenient measures for our purpose are
those in terms of the "relative root mean square error,'" the
ratio of the root mean square error of the forecast to the root
mean sduare value of the climatic variability. The figure
provided by such a measure gives immediately a standard deviation
value that will permit the reconstruction of a reasonable
covariance matrix for estimating the range of perturbation that
might occur 1in an observed sounding of wind components and

temperature.

A convenlent norm for measuring the effectiveness of a
forecast 1s '"persistence." The persistence forecast is formalized
by the assertion that the wind and temperature will remain as

' formalized

last observed. Another forecast norm is "climatology,'
by the assertion that regardless of present conditions, expected
conditions will be those of the climate mean values., Each of
these forecast norms may be thought of as a "best" forecast in
some domain of time or distance., The situation is illustrated
graphically in Figure 9 where time lag 1s the abscissa and
relative error (root mean square) is the ordinate. The relative
residual error of the climate forecast is always 1. It is
reagonably obvious that for estimates a long time in the future
that an estimate based on the climate mean values cannot (at
present)be improved upon. The error of the persistence forecast

is given by

o /0, = y[2(1 - 1)

where r = correlation coefficient relating present and future

parameter values, 0, = standard deviation of error (root mean

square error), 0, = standard deviation of the natural error or
climate estimate, For time lags large enough, the present

parameter value 1s uncorrelated with the future value so that



..51_

r approaches zero, and the relative root mean square error
approaches 1.1 = v 2. Thus, the persistence forecast at
long time lags is appreclably worse than the climatological
forecast. The two are of equal value at such time that r =
0.5, i.e., while the correlation between present and future

parameter values is still appreciably large.

A third forecast ncrm is the "statistical estimate' given
by the relation

where p = the estimate of the parameter, p = the mean value of
the parameter (the climate estimate), p, = the observed value
of the parameter, and r = correlation coefficient (function of

time lag or distance). In another form
p=rp0+(l-r)§

the statistical estimate 1s a value interpolated between the
climate estimate (p) and the persistence estimate (p,); further,
it is the best of all possible interpolated values. The

relative root mean square error of the statistical estimate is

given by
0,/0, = VI -7T
where 0, = root mean square error of the statistical estimate.

It 1s readily seen that

for all time (or distance) lags.

Idealized curves for o,/0, and ©0,/0, , the relative
root means square error of persistence and statistical forecast

normg arc shown in Figure 9.
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The verification of forecasts has produced little informa-
tion that gives explicitly the root mean square forecast error.
Thompson(ge) presents an illustration analogous to our Figure 9.
Buell(gg) has collected data from various sources, The scatter
of forecast verification data is so large and verification is
carried out by such widely different methods that 1t 1is impossible
to plot points on Figure 9§ to represent the situation. Two

rather wide-hatched areas are indicated at 12 hours and 6 hours.

The lower part of the hatched areas indicates the skill of
objective forecast technigues (numerical prediction) while the
upper part of the range represents the skill of subJective
forecasts. The skill of subjective forecasts is generally
accepted as insufficient to warrant an effort over a shorter

period than six hours,

The trend of the persistence and statistical forecast
errors shown in Figure 9 applies particularly to wind forecasts.
For such items as temperature, the general shape of the curves
remains about the same, but the critical point where persistence
equals climatology (shown at 24 hours with ordinate 1.0) moves
to the neighborhood of 48 nhours. The relative position of the
forecast "areas" to the curves remains unchanged. The details
of the curve labeled persistence, in the case of temperature
at the surface (instrument shelter level), is particularly

complex(18).

Even in applying Figure 9 to wind estimates, 1t 1s under-
stood that ¢ and o, are "vector" standard deviatlons. 1In the
case of individual wind component standard deviations, the
components follow different curves for persistence., The reasons
for this behavior lle beyond the scope of this study (see
Bue11(16) ).

The shape of the curves for persistence and statlstlcs
near the t = 0 1s that given by Durst(39J and is approxlimated by
v t . For practical purposes, the curve should intersect the
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ordinate at t = 0 near the point marked A (O/Gc =~ 0.2). This
is due to the fact that the small scale variability of atmospheric
parameters such as wind and temperature are dominant iInfluences
near t = 0, The definition of the curve in thls region requilres
speclal experimental technliques that are usuvally not compatible
with operational requirements.



E. SOME SPECIFIC DETAILS

1. Short-term Variabllity

Temperature and wind fluctuations corresponding to a

(21> were used to

correlation function described by Sawyer
describe the short period variability. The standard deviations
assigned to such fluctuations were 0,3° ¢, and 0.6 mps for
temperature and wind components, respectively. These standard
déviations are on the small side as compared with values
encountered over a few tens of minutes quoted iIn the previous
sectlons., They were deliberately chosen so to present what
might be considered the most conservative case that warld be

encountered 1in a practical situation,.

The correlation function above wags entered as a height
lag correlation matrix of considerable size (mostly zeros
except bordering the principal diagonal) since the spacing
between levels was only 400 feet and a height range of several
kilometers was required, Since this matrix corresponded to
fixed levels while the soundings to be perturbed were recorded
at variable levels, the perturbation of the sounding was
accomplished by interpclation between perturbations at fixed

levels,

2. Longer-term Variability

The interlevel correlation tables for wind components and
temperature (Tables IV and V) were used as a basis for the
interlevel correlation structure of the perturbations. The
standard deviations used to model perturbations that might
occur were taken as one-quarter and one-half the climatological
standard deviation for the season concerned and conditions
expected correspond to a departure from a forecast of about
6 hours and 12 hours after the sounding (with a small bias to
a somewhat shorter time of 3 to © hours, respectively, if

persistence only is considered).
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Since the separation between levels 1n the above correla-
tion coefficient tables is rather large, values were interpolated
at convenient intervals (250 m) to roughly correspond to the
spacing between levels 1n the meteorological soundings. The
resulting correlation matrix was then treated as in (1) above

for short-term variability.

The interpolation process gives reascnable correlation
coefficientsexcept for values that would border the principal
diagonal of the matrix. The principal diagonal entries were
assigned the value 1,000 and the interpolated values 1in
diagonals bordering the principal dlagonal were obtained by a

process that took this into account.

The resulting matrix of correlation coefficients is
somewhat unrealistic if considered from the viewpoint of the
large scale atmospheric motions. On the other hand, 1t 1is
intended not only to mimic the large scale motions but also
the smaller scale eddies. The difficulty with the interpolated
sounding lies in the fact that as separation becomes small the
correlation coefficients approach 1.0 linearly. Even Sawyer's(gl)
small scale correlation structure does not behave in this way.
The situation is automatically adjusted by the fact that when
applied to the sounding, values are interpolated from fixed
matrix heights to sounding helights as they may occur, This
results in "smoothing" of the perturbations on application to
the sounding. If one were to work backward from the perturba-
tions applied to the sounding to the interlevel correlation of
the perturbations, the "sharp" peak on the diagonal would not
be present and instead there would be a "pounded' peak; Just the
approach to reality that we wish to obtain.

(The same situation applies to the case of the short-term
variability. Here the matrix initially contains a "rounded"
peak along the diagonal. The interpolation process tends fto
broaden this peak somewhat. Though the effect is present, 1t
is minimized by the fact that the level spacing 1s smaller in

this correlation coefficient matrix. )
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The effect of time lag on the correlation coefficients
has been ignored, This effect has been introduced through the
control of the standard deviation of the perturbation of the
temperature or wind component. Though some data exist for time
lag correlations of wind, little is available for temperature in
this more extended sense.
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CHAPTER IV

VARIABILITY OF THE ATTENUATION COEFFICIENT

A. GENERAL DISCUSSION

The coefficient of attenuatlion 1s employed in the form

o (1)

where I, 1s the unattenuated 1ntensity at a dlstance r and
where o 1s the attenuation coefflcient. The distance, r, 1s
strlctly the distance along the ray path, but 1s not appreci-
ably greater than the dlstance along the ground. The attenua-
tion coefflclent 1n thils form 1s more properly expressed as
the average attenuation.
r
a, = (1/2) [ als)as (2)

O

where g(s) 1s the attenuation at the distance s along the ray
path.

Let the operator § indlcate a perturbation from nominal

condltions. Then from the above
r
bay = (1/r>j<aa)ds
0

in whlch the perturbation of the ray path 1tself 1s neglected.
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The mean sguare varlatlion of the attenuatlon coefficlent is
then gilven by a double 1ntegral

r r
(604 )2 = (1/27) [ [i(6a’) (6" )77 as’ ds*

where §q’ 1s the perturbatlon of the attenuation coefficlent

at s’ while §g” 1s that at s”.

Let ¢ be consldered as dependent on an atmospheric para-

meter, p. Then §a = (da,/3p)6D 5O that

(6 )® = (1/2%)f [ (30" /2p) (20" /2p) (6p")(6p") o’ ds”

The product of partial derivatives under the integral can be
evaluated adequately only 1n specific cases. These factors are
taken outslde the integral and assigned a common average value
for the path so that

(bay)® = E(Ba/ap)/ﬂsz (6p’)(6p”) ds’ ds”

Let the correlation coefficlent relating the perturbatlons at
s

s’ and s” be indicated by R(s’, s”). Then

r

(60x)® = L(3a/30)/22° (60)* [ R(s, s* ) as’ as”

To simplify further the integratlon, the correlation functilon
1s assumed to be function of only the separation between s’ and

s” along the path

(boy )? = E(aa/ap)/rlszf R(s” - s’) ds’ ds”



whence, writing s = 8’ - s’ ,

- r
(60, )7 = [(3a/3D)/r)% (8D)% - 2f<r-s>R<s>ds : (3)

O

The value of the integral factor depends on the detailed
structure of the correlation coefficlent. Thils factor 1s not
critical for our purposes. For the small scale, two examples
indicate the magnitude of this factor. Let R(s) = exp(-s/¢)

where £ 1s a slze parameter,

Then

r
Ei/irus)R(s)ds = rg[l-exp(-r/e)]
- 22[1-(r/4 + L)exp(-r/2)]l =2 re, v > > 4. (4)

As another example, let R(s) = exp(-s®/247) whence
Qf(r’—s)R(s)ds = (W7 ar)ert(r/21)-20° [1-exp(-r>/24°)] ,

- 2\[? re r>>4 . (5)

In the case of the large scale perturbations, the value

of R(s) may be taken as near 1 over the whole range so that

Zi/.(r—s)R(s) ds = r® (6)

The mean square perturbatlon of the total attenuation co-

efficlent then becomes, using (4) or (5) in (3)
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(60y)? = (3a/3p)2(6p)* - k - (&/T) (7)

for small scale perturbations where k lles 1n the range from

2 to 2/7. For the large scale perturbations, using (6) in (3)

(6ax)® = (20/3p)2 (6p)? (8)

It 1s readily seen that the small scale mean square per-
turbation of the total attenuatlon coefficlent approaches zero
for large distances (from (7) ), while 1t remalns constant
(from (8) ) for the large scale perturbations.
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B. APPLICATION TO THE CLASSICAL ABSORPTION COEFFICIENTS

The absorption of sound in alr may be dlvlided 1Into three

parts

o= o1 t oy t os

where

classlcal absorption coefficlents,

R
I

o, = Intermolecular absorption,

mlscellaneous other absorptlon.

Il

U3

The classical absorption coefficlents are glven by

= + +
o1 o a, + aj o,

where
a, = absorptlion due to viscosity
a, = absorptlon due to conductlon of heat
ag = absorptlion due to diffusion of molecules
a, = absorption due to radiation of heat

Nominal values of the classlcal absorption coefflcient are
40
(40) (db/km) in the short table inserted below. They

have the variations

glven

Wl
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T ay + s el Q.
-50°C 1.08 x (r2/p*) x 1071 1.21r7 x 1072 1.68 x 1072
0°C 1.18 1.25 1.51
50° G 1.25 1.31 1.38

with the temperature of +1.7(f®/p*) x 10—4, + 1.0(f%) x 107

and -3.0 x 1072 ab km > (°c)~1, respectively, where f is fre-

quency 1n kilocycles and p¥ 1s pressure 1n atmospheres.

Using nominal values at 0°C with £ = 1 kllocycle, p*¥ = 1
atmosphere, then ¢, = .147 db/km while (3g,/3T) = 1.53 x 10“&
db km"1(°C)_l. For small scale temperature varlabllity in the
atmosphere of 0.3°C, the root mean square variation of the
classlcal attenuatlon ccefficlent 1s

bo, )- (small scale) = 4.6 x 10* {k(2/T

A nominal value of £ = 0.2 km, and k = 2, then at 10 km the

RMS variation of classlcal attenuatlon from small scale varia-
tlons 1s 9 x 10'3 db, an amount too small to be consldered.

For large scale variablillty of 3°C, corresponding to a time

lag of near 12 hours under worst (most highly varlable) condil-
tions, the RMS attenuatlon varlablllty at 10 km 1is approximately
1.4 x 1071 db, an order of magnltude larger, but still quite
negligible.
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C. APPLICATION TO INTERMOLECULAR ABSORPTION

The coefflclent of attenuation due to Ilntermolecular

absorptlion may be wriltten as

o, = o, = O * W

R
v
TN
}_.J
@
O
_|_
O
=
Ul
3
—~
HH
"
l_J
(@]
|
w

where

f = frequency in cycles
T
h

temperature in degrees Centlgrade

it

absolute humidity (grams m=3)

Il

and the g's are 1n units of declbels per kilometer. The numerl-
cal expresslon for O x as a function of temperature 1s simpli-
fied from a more complex expression 1in terms of physlcal para-
meters(ul). The absolute humidlty is expressed 1n terms of more

accesslble parameters as
h = (emy,/RT) x 10°
where

vapor pressure of the water vapor

Il

e
T = absoclute temperature
m, = molecular welght of the water vapor

R = gas content
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The factor of 10° converts to grams per cubic meter, a
more convenlent unlt than grams per cublc centlimeter. An
abbrevliated table 1n terms of saturatlon vapor pressure and

saturation absclute humidity as a function of temperature 1s

glven.
TABLE IX
SATURATION VAPOR PRESSURE AND ABSOLUTE
HUMIDITY AS FUNCTION OF TEMPERATURE

T(°C) e(mb) h(gm™3) T(°C) e (mb) n(gm=3)
-30 0.38+ 0.342 5 8.72 6.757
-25 0.64* 0.559 10 12.28 9.401
-20 1.04% 0.894 15 17.06 12.832
-15 1.90 1.403 20 23.40 17.300
-10 2.86 2.158 25 31.70 23.049

-5 4 .02 3.261 30 42,48 30.371
0 6.11 4.847 35 56.30 39.599

*
With respect to a plane 1ce surface, others wlth respect
to a plane water surface.

The value of 0oy is linearly dependent on the frequency.
The factor w 1s dependent on both the freguency and absolute
humldity 1in such a way that w has the maximum value of 1 when
f =7Ffhp=1.01 x 10° h2.

Since the perturbatlon of the attenuatlon coefficilent de-
pends on both temperature and vapor pressure perturbations, we

write 1nstead of (7) or (8), the expression

(80,)% = [(3am/3T)? (8T)? + (day,/3e)? (6e)2 1(ks/r) (9)
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where the final factor is set equal to 1 for large scale
fluctuation. In the above, the temperature and vapor pressure

perturbatlions are consldered as uncorrelated and to have the

same scales and correlation functions.

The derivatlve expresslons, coefficlents of the perturba-

tlon variances, are

_ | 0.45 2 71 -X2 N\

aO‘m/5T T Opay W LO.H5T—1OH.1 T (1+X§/J (10)
_ 1-x2\/2°

2ap/2e = Cpgx = W <1+X5>\€7 (11)

where, 1n the first, T is 1in degrees absolute and the first term
1n brackets ls confined to the range from 265°K to 310°K (the
valid range for egpgy = 18.5 + O.45T(°C) and 1s the expression
(1/opayx) (d3amax/3T)). Aslde from the linear dependence of e ..
on frequency, the frequency enters these expressions in w and

(1-x=)/(14+x%). Selecting appropriate maximum values, then

.
|3e, /57| < @ [0.45/(0.45T-108.1) + 1/T | = 0.028,,  (12)

|30 /2] < a,./2 (13)

and the resulting upper bound for the variance of the perturba-
tlons is given by

(6, )° < a7, ((0.038)2 (67)7 + (52)? /e )(kt/x)

m

For small scale varlations with e, = 20 db/km at one kilo-
cycle /TET7§'= 0.3°C, the term due to temperature varlatlons
amounts to .168/k4/r and wlth k = 2, £ = 0.2, r = 10 km, the
result at 10 km 1s 0.336 db root mean square variatlon. The

part due to variatlon of water vapor pressure (humidity) (with
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nominal estimates of

¥ (6e)® = 0.4 mp. (e = 8 mb.)

becomes 2 db, an appreciable amount. The combination of these

two components into a total root mean square variability of the
intermolecular attenuation is weighted so heavily on the silde

of the part due to vapor pressure variabllity that the temperature
variability contribution is of little importance.

For large scale variability, the factor kt/r 1s replaced by

1 and
(sT)2 = 3.0°C , v (se)® = 2 mb.

Under the same conditions as before, the part due to temperature
variation becomes 1.68 db/km while that due to vapor pressure
variation becomes 5 db/km. These are, like before, values that

are much too large.,

The estimates (12) and (13) supply upper bounds that are
unrealistically large. In arriving at the above estimate of
the variability of the attenuation due to intermolecular absorp-
tion, the values of x wused to approximate the derivatives are
those giving maximum values of w = 2x/(1 + x2) and w(l - x%)
(1.0 and 0.5, respectively, though the second should be 0.515).
Conservative, but frequency dependent, estimates may be obtained
in the form

|3a, /3T| < o, [0.45/(0.45T-104,1) + 2/T] = 0.03 q, (1%)

|3a, /3] < a,/e (15)

where ¢, on the right is an average value of the attenuation

coefficient at the frequency concerned, Since g, = Qpax W,

w = 2x/(1 +x®), x = f,/f, the value of q, may be less than

a by an order of magnitude or so. In thls case a nominal

max
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value of o of 2 db/km replaces that for apax (20 db/km).

The resulting small scale variability i1s then about 0.2 db
at 10 km. For large scale variability, the estimate is 5

db/km or 5 db at 10 km.

It
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CHAPTER V

CONCLUSIONS

The variability of the meteorological parameters dces not
permit the estimatlion of sound intenslty level more accurately
than with a standard deviation of 5 db, Thls 1s the case
regardless of whether a reasonably long or a very, very short
time elapses between specification of the meteorological
parameters from sounding observatlons and estimation of sound in-
tensity. This amount of error is inherent in the small scale vari-
ability of the atmospheric parameters,

Though there are soundly based obJections to using the
ray tracing method for estimates of sound intenslty (failure
of the method to satisfy in detall the basic assumptions
involved), it 1s not clear that any (physically) more satisfylng
method of intensity estimation would result in less variabllity
of the estimates,

The effect of atmospheric variability on the absorption
coefficlents 1s relatively small except in the case of 1inter-
molecular effects that depend on the humidity. The small
scale variabllity of the atmosphere contributes 1ittle to their
variability, amounting to a less than 1 db at 10 km. The large
scale variability is more effectlive since conditlons along the
whole ray path are changed. These may amount to as much as 5 db
at 10 km,
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Although the variability of sound intensity estimates (for
direct rays) is near 5 db regardless of the variability parameters
(over the range covered), the probability of rays returning to a
fixed point 1s highly variable. It appears that this informatlion
would be of value for operational purposes. To provide this
information, the ray tracing program may be augmented to provide
a Monte Carlo perturbation of the sounding and the tabulation
of these probabililities,.
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APPENDIX A —_

RAY TRACING

The fundamentals and some details of the ray tracing
technique are discussed in this appendix. To begin with, we quote
L. M. Brekhovskikh(l)(p. 461), "Unfortunately, ray construc-
tions which are helpful in elucidating the nature of the wave
propagation rather frequently turn out to be completely use-
less for a quantitative description." This situation is to be
kept in mind, since sound intensity estimates based on ray
tracing methods are discussed and used almost exclusively in
those regions. of the sound field where they may be applied.

The reason for using ray tracing (in spite of the above warn-
ing) lies quite simply in the fact that the range of atmos-
pheric conditions which must be covered in estimating the sound
intensity 1s so varied that estimates based on a more complete

solution of the wave equations are beyond hope of attainment.

The section on fundamentals follows the treatment of
Ingard<2%3ho in turn follows that of Blokhintsev(25gnd is
included to put into perspective the fundamental background of

the ray tracing method.

Some details are discussed in the section on the ray trac-
ing method with emphasis on the distinction between the ray
tangent and the phase normal, though this difference is rela-

tively unimportant for practical considerations.

The physical assumptions behind the ray tracing method are
considered in detall in terms of their practical significance.
The section on general consideration of the assumptions is
followed by a discussion of the discontinuous character of
dr/dwo. This .comes about through violation of the assumptions
and comments on the gradient of the focusing factor which
must be seversly bounded if the assumptions are to be satisfied.
The intensity at a "focus" has long been known to require special
treatment since the ray tracing assumptions are not satisfied at

such a point.
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The use of "rounded maxima" offers at least a partial
way out of the problems introduced by the violation of the

assumptions in the usual "linear layer" treatment.

A. FUNDAMENTALS

The results of approximating the fundamental equations of
acoustics in a moving, nonhomogeneous medium lead, in the zero'th

approximation, to the "eikonal equation"
v @ |% = a®/c® , qQ=2¢Co -V O.V (A.1)

where ©® is the phase of the wave, co is the reference speed
of sound, c¢ the speed of sound as a function of location
(coordinate) and v is the wind vector. The quantity g/c =
is the generalized index of refraction. The surfaces O =
constant of the partial differential equation (A.1l) represent
the expanding sound waves. The complete solution of the ray
geometry eventually resolves itself into finding the solutions
of this equation or of carrying out the equivalent processes
(either exactly or approximately). In obtaining (A.1) it is
assumed that: (a) the changes in the medium are small in a
distance of a wavelength, and (b) that the wave number k

(k = 2r/% , X = wave length) is large (wavelength is small).

The analysis of the implications of (A.l) lead to the
association of two velocities with the propagation of the
sound wave. The phase velocity is given by

Veo=¢ + v . (A-E)

Tt is directed along the normal to the surfaces of constant
phase ( @ = constant), and v, is the projection of the wind
speed vector on the normal to the wave. The sound energy is
propagated in a somewhat different direction determined by
the ray velocity

vo. = Cm +V (A-3)
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where im is the unit vector normal to the surface of constant
phase and V is the wind vector. It is readily recognized that
the projection of Vs » the ray velocity, on the direction
normal to the phase surface, m , has the magnitude of the
phase velocity

The intensity of the sound is conserved along a "ray tube" so
that

PPV, T _ Vo Jo
p q c® Po Qo Co”
where p = amplitude of the sound pressure
p = air density
J = area of the "ray tube"
VS = ray velocity
qQ = refractive index

and where the unmodified quantities refer to a point P while
those with subscript "o" refer to some other point P,on the
same ray tube. The sound intensity is usually proportional to
p® The intensity at P in terms of the intensity at Po is

I = To(30/3)(Vg, /Vg)(p/Po)(w/q0)(e/co)® .

When the points P and P, are at essentially the same level, it
is readily seen that all of the ratios are individually very
near unity with the exception of the ray tube area ratio
which may have undergone a considerable change during the
propagation process. The approximate intensity at P is then
given by

1 = Io(Jo/J).
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It is readily seen from Figure 10 that the ray tube cross
section PB at P is given by

PB = (PP')sinwp

and that the horizontal distance between rays separated by the
initial angle Ay is

PP' = (3r/3yo)AY

whence
PB = (ar/awo)sinwp(Aw).

Taking the cylindrical symmetry of the representation into
account, the area of the ray tube is 27r times the distance
PB, so that

J = 2nr(ap/é¢°)sin¢p(A¢).

The total energy emitted by the source 1s represented by
W so that the most that is emitted in the interval Ay is given

by
AW = IoJo = W cosyo(by) /2

which is identified with the total energy of the ray tube at
unit distance, Io Jo . Then from the above

I =W coswo/thnr(dr/d¢o)sin¢pj .
If we let I, = W/4rR® be the intensity that would prevail

at a distance R with spherical spreading under homogeneous

conditions, then

I = I*[R coswo/r(dr/dwo)sinwp] .

b



_74_

Since, for our purposes, Wp = Yo and R = r , we may write
I=1,-%, f = r/(dr/dyo)tany, ,

in which f is called the "focusing factor." When the source
does not radiate uniformly in all directions it may be nec-
essary to introduce additional dependence of I, on the altitude
and azimuth ¢o, 80 of the rays.

B. THE RAY TRACING METHOD

1. The Ray Equations

Methods of tracing sound rays in the atmosphere has a long
history and dates, at least, from Lord Rayleigh 2 ho credits
Prof. James Thompson (1876) with the method of estimating ray
curvature (for light rays) and Prof. Osborne Reynolds (1874)
with pointing out the effect of temperature on the speed of
sound. Since that time the literature on ray tracing has be-
come so very extensive that only the most impoifant references
need be mentioned. R. Emden and E. A. Milne reat the pro-
blem with great care, particularly with regard to the general-
ization of Snell's Law to an atmdsphere in motion. This
particular topic, the generalization of Snell's Law, is treated

29)

with great care by Kornhauser Nearly all ray tracing
techniques are based on approximations to the equations for the
sound rayse However, an exact method for integrating the equa-
tions under reasonable assumptions is given by Rothwell .
The method of Milne 1s followed in the analysis used by Dorman
and Brown(Blz

The differential eguations of the "phase normal" locus or
of the "ray" may be written from the velocity expressions (A.2)

and (A.3). For the "phase normals" from (A.2)
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dx/dt

1l

(c + vn)cOsa

dy/dt

Il

(¢ + vn)cosB (A.L)
dz/dt = (c + v )cosy

v, = u cosx + Vv cospB + w cOSy

where ( @ , B , v ) are the direction angles of the "phase
normal” (the angle that the tangent of this curve makes with
the reference axes) and (u, v, w) are the components of the

wind.

For the sound "ray" the corresponding equations from
(A.3) are

dx/dt = ¢ cosa + u,
dy/dt = ¢ cosp + V, (A.5)
dz/dt = ¢ cosy + W.

The differential equations of the "phase normals" and of
the "rays," (A.4) and (A.5), réspectively, amount to nothing
more than a statement of the velocity relations, (A.2) and

(A.3).

In view of the fact that along a ray the phase normals
are parallel to a fixed plane (see Milne 2 , we may take
coordinate axes so that this is the (x,z)—plane, i.e., cosB = O.
In such a case we may let a = o , ¥ =17/2 - ©® so that the
differential equations then become, for the "phase normals,"

dx/dt = (¢ + Vn) cosy ,

dy/dt = O ,
dz/dt = (¢ + v,) singp ,

v, T U cosp + W sing .

and for the "rays"
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dx/dt = ¢ cosp + u ,

dy/dt v

Il

14

dz/dt = ¢ sing + w .

For the applications at hand, the time dependence of the
"ray" or "phase normal" coordinate is of little interest. The
time may be eliminated to yield

dx/dz = cotp ,

for the "phase normals" and

dx/dz = (c cosp + u)/(c sing + w) ,
dy/dz = v/(c simgp + w) ,

for the "rays",

The presence of the vertical component of the wind in the
denominator above is troublesome, but may be handled by a sub-

terfuge. One may write

dx/dz = (c cosp + u*)/c sing ,
dy/dz = v¥*/c sing,
where
u o= u - w(c cosp + u)/(c sing + w) ,
*
v = cv sing/(c sinp + w) ,

so that the presence of the vertical velocity term is accounted
for by a small perturbation or error in the evaluation of the

horizontal wind components.
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2. Integration of the Ray Equations

The ray tracing process consists essentially of selecting
an appropriate method for the integration of the equations for
the rays. Many techniques are available; the choice among
them lies only in arriving at a solution of sufficient accuracy
with a minimum of labor. The most commonly used method 1is that
of a "constant curvature" or "circular arc" approximation. In
this case, the ray curvature is estimated for each layer of the
atmosphere and the ray is approximated by a circular arc through
that layer. Rothwell 3
the ray equations exactly. In all instances a fundamental crutch

ses approximations after integrating

for the integration process is Snell's Law (the appropriate
generalization to take care of the wind situation).

a) Snell's Law

Snell's Law in its usual form

c/cosp = cg/COBpe = const.

along a phase normal must be modified for application to a moving

medium. The modifications that need to be mad% are somewhat
subtle. They have been carried out by Milne(2 Qnd later by
Kornhauser(29%ith the result that

(¢ + u cosp + w sing)/cosp = (Co + Uo COSPo+Wo Singe )/ COSYo (A.6)

along a ray (rather than along a "phase normal") although the
angles ©, ©o refer to the inclination angle of the phase hormal.
An associated expression due to Milne(28%s that along a ray the
ratio of the direction cosines associated with the x and y

directions remains constant
tang = cosB/cosq = const,

so that the projection of the unit normal to the phase surfaces
has a constant direction in the (x,y)-plane. To obtain the

expression (A.6) above, the coordinate system is chosen so that

Hel
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the "phase normals" along the ray concerned lie in the (x,y)
-plane. This requires that B=r/2 and consequently a = o,

Y =7/2 - © where v is the elevation angle of the "phase
normal" along the ray.

The terms in w, ws of (A.6) are not included in the
analysis by Milne , but his analysis may be extended to
include them without difficulty. Kornhauseqégggnalysis may
be construed as containing these terms though they are not
specifically stated and his further analysis is confined to

a special case in which they are not required.

The vertical velocity components, w, wo,'may be combined
with the horizontal component in the formulation of the gen-
eralized Snell's Law by a kind of subterfuge. Thus

c/cosp + u* = &g /cospe + U (A.7)

where
u* = u + w tany, uF = U + W tanypg .
The vertical wind component is usually two or more orders of
magnitude smaller than the horizontal component and, conse-
quently, (except for exceptional cases) may be considered as
a part of the error or of the variability of the horizontal
component as far as its appearance in Snell'!s Law 1s concerned.
b) Circular Arc Approximation
From the equations of the ray path (A.6) and Snell's
Law (A.7)
dx/dt = ¢ cosp + u ,

dz/dt

¢ sino B

c/cosp + U = cg/coSpe + Ug
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The radius of curvature, R, of the ray may be calculated

following Gutenberg 32. The inclination of the ray is given
by

tan y = (dz/dt)/(dx/dt) = dz/dx

i

and since R™* dy/ds where s is the arc length along the
ray then

R™' = siny cos®{ [ d(dz/dx)/dz ].

The indicated derswvative with respect to 2z involves the
vertical rates of change of the inclination of the phase normal
dop/dz which is obtained from Snell's Law in terms of the
vertical rate of change of the speed of sound, dc/dz, and wind
component, du/dz . The resulting expression for the ray

curvature 1is

R™* = —c[(c cosp + u cos2yp)(de/dz) + (¢ + u cosaw)(du/dz)]+

(c® + 2c u cosp + u? ), (£.8)

Since the speed of sound is much larger than the wind component,

this reduces to, in the zero order approximation,
R = - [(dC/dZ)cosm + (du/dz)] et (A.9)

If the atmosphere is divided into layers through which the
speed of sound and wind component are linear functions of
altitude, i.e.,

dc/dz

a s

du/dz

B

then the ray may be considered as a circular arc in such a layer.
The parametric equations for the ray through the layer, in terms

of the parameter | , the angle of inclination of the ray, may be
written as

Vst 4|
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Xog = X1 = —R(Sinw‘? - Sinwl) s
(A.10)
Zz - z1 = R(cos¥z - cosli) ,
where the subscript 1 indicates the conditions at the bottom
and the subscript 2 those at the top of the layer.
The angles of inclination of the ray at the top and
bottom of the layer are not known a priori and must be calcu-
lated from the equations of the ray and Snell's Law. Thus,
from the equations of the ray
tany = ¢ sing/(c cosp + u),
. . - ]/2
siny = ¢ sinw/(c* + 2cu cosp + u?) (A.11)
cosy = (c cosp + u)/(c +2eu cosp + u?)¥2,

When the wind speed is small compared with the speed of sound,
the first order approximation becomes

IR

Sin@[l - (u/c)co&p] 5

cosy =~ cosp + (u/c)sin®yp .

siny
(A.12)

The angle of inclination of the phase normal, © , is known
at each level and for each initial value, o , from Snell's Law

cosp = ¢ COSwo/[Co - (u - uo)cosmo] . (A.13)

The system of equations (A.8), (A.10), (A.11) and (A.13)
provide a reasonably precise method of obtaining the ray path.
The corresponding approximate system (A.9), (A.10), (A.12) and
(A.13) provides a system which, though not so precise, requires
much less arithmetic. The second of equations (A.10) in both
cases serves little purpose, since the quantities concerned are
somewhat redundant. For example, Snell's Law is nearly the same
as the second of (A.10) when expressed in the same terms. One
may write Snell's Law in the form
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Cy /COSpa + Ug ¢, /cospr + Wy

= [Cl +Q(ZB_2‘1)J /cospy, + w + B(zz-z; ) .
Solving for the height difference across the layer, the

expression

27 2y < [01/003$1(G+BCO&$2)](COS$2 - cospy )

bears a very close resemblance to the second of equations (A.10).
The first factor on the right resembles the radius of curvature
while the second factor, the difference in cosires, corresponds
but with cosines of somewhat different angles (the inclination
of the phase normal instead of the inclination of the ray).

The parameters, cosp and ¢, which appear in (A.9), vary
through the layer. It is required to make a choice which
represents average values in order to apply (A.9) to a layer.
A sultable choice seems to be

cosp/C = cospa/Co 3 € = (¢ + c3)/2

For layer applications, (A.9) becomes

R = - [(dC/dZ)CO&pO/CO + (du/dz)/é] = - (o cosgo/ce + Bsc) .
It may also be seen from (A.1ll) that cosgpe differs very little
from cosy,. Consequently, for practical applicatlons

R = - (a cosyg + B)/co

where ¢ = Co has been used in connection with the B term.
This last approximation is quite poor, but is Justified in
view of the great inaccuracies in determinling B.

¢) Rothwell's Method

Rothwellfs(3o>solution of the equations of motion
has the virtue of being mathematically exact (within the frame-
work of the physical assumptions). The following is an outline
of his procedure, The basic differential equations and Snell's
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Law are

dx/dt = ¢ cosp + u,

dz/dt

Il

¢ sine ,

c/cosp + u = Cp/COSpe + Uo = K.

Change to the inclination of the phase normal, ¢ , as the

independent variable so that
dx/de = (dx/dt)/de/dt), dt/de = 1/(dz/dt)(dw/dz),

and assume that in the layer concerned ¢ and u are linear

functions of height
c= ¢ +az, u=u + Bz , (A.14)

where z is the distance above the bottom of the layer. Snell's

Law gives the relation between z and o

2 = [(K - w)cosp - o |/(a+8cosy). (A.15)

Differentiating Snell's Law with respect to z

dw/dz = -(@ + Bcosp)cosy/fe singy
so that

dt/de = -1/cosg(a + Bcosy), (A.16)
and

dx/dy = - (¢ cosg + u)/cosple + Bcosg). (A.17)

In (A.17) the quantities c and u are functions of © which may
be found by substituting (A.15) into each of (A.14)

c = [aK - (uya -~ 018)]cogn/(a+8 cosw) (A.18)

[BKCOSCP + (wa =& B)] /(o + Bcosgp). (A.19)

o
I
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Divide (A.17) into two parts, one with the "c¢" term and the
other with the "u" term so that

x = x' + x" (A.20)
where dx’/de = ¢/(a + Bcosy), (A.21)
ax"/de = u/cosp(a + Bcosy). (A.22)

Using (A.18) and (A.19) in (A.21) and (A.22) respectively

dx /do = [aK + (c;8 - u1aj cosp/ (o + Bcosg)? (A.23)

ax"/deo [(ula - ¢ B) + BKcos¢] /cosg (o + Bcosy)? (A.24)

Equations (A.16), (A.20), (A.23) and (A.2L4) then constitute the

differential equations for the rays.

i) The time integral.

The results of integrating (A.18) are of
minor interest but are included for completeness. There are
four cases that need to be considered in each integration.

Case I: a®>g®

P2
te-t1 = —(l/a)[log tan (w/4 + ®/2)]w1 +
: 3 . 1 2 (A.25)
{28/a(a?-82) %[ tan™ {(a®~87) "ran(w/2)/(a+8) } |
Case II: B%>a”
¥z
ta-ty = -(2/a)[ 108 tan(r/4 + m/2)]@1 +
(A.26)

{2s/a(82-a2)%}[tanh'l{(sz—ag)%tan(w/E)/(a+B)}]zj
Case III: a =B # O

G ®z
te-ty = -(1/a)log tan(v/&+w/2)]wl+ (1/0)[tan(w/2) | (A.27)



Case

ta-t, = —(1/a)[1og tan(w/ 4+ @/2)]m

due to x' from (A.23).
following:

Case

IV:

I:

-y

@

T+(l/a)[co£(m/2)j

1“;\2

Gl

ii) The major displacement integral.

The largest part of x =

C(2>82

x1!

+ X

1"

ak + (Cle - ulon) ar sine —'CDQ—
o” - 87 “ o + Beosy “1
12 .
- 3 _g2 j\aa
___EEL______[tan-liig;_ﬁ_l____ tan(m/Z)lJ
(a® - B%)¥* o+ 8 et
32 > @
oK + (ci8-mra) . sine sz
©
B2 - o o T BCOSCO :

It

a + B

[ak + (¢18 - wa) ] [a - tan(m/E)]Zj / ag |

a=-8#0
. -2
- [aK + (e - Ula_][cp - cot (9/2) .

/
/ ap

n
8

Q2

————gg—;;;—[tanh—l{Lﬁj:—ﬁf)jf—-tan(v/@)}]n
- a®

1

is that

The integration of (A.23) yields the

(A.28)

(4.29)

(£.31)

(A.32)
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iii) The minor displacement integral.

The integration of (A.24) for x" leads to
somewhat more complex results. The first case is given here
so that it may be "viewed with horror." This part of the dis-
placement is always small and may be approximated quite easily.

Case I: a® > B®

" " ua - CB r ¥z
x'"y - x'1 = 5 L1og tan(r/4 + m/2)]w1 -
2
B [aK + (015 B ula)J sino P2 +
a(a® - B?) @ + pcosy "~ *
(A.33)
3 s 2_ 2 - J
28[& K + ( a“ -8 )(015 ula) L (az _ Bz)ya 0o
tan { tan(@/Q)] :
a(a®-82)% a+ B ©
Case II: B2>a®, is similar to (A.33) except that the last
term is modified in the same way as (A.30) and (A.26).
The values of x5 - xi may be approximated easily from
the relation
xt - x! ¥ (x, - %) (9/Q) (A.34)

where u and 5 are mean values for the layer concerned.
. -_— . . " " . .
Since u/c is a small fraction, x, - X, 1s a small correction

/ ’

to Xy = Xy o

iv) Short cuts

It has already been mentioned that the in-
tegration of the "minor displacement" due to the wind speed term
of (A.17) may be estimated approximately by the expression (A.34)
as a fraction of the "major displacement."
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The major displacement itself may be estimated from (A.21)
directly by assuming that the speed of sound is constant in the

layer concerned. Thus

/ /o~ 2c -1 f(a®-B%)¥® PR 2_ g2
= B2_g2 ) V2 . e
Xs - Xp ;'__29____; [tanh'lt;—lg—l———tan(m/E)fJ , B® >a® , (A.36)
(87-0%)¥ a+ B ©
-
Xs - %, = (e/a) [tan(m/Q)J , a =B #0, (A.37)
®1
Pz
i - x{ = - (3/a)[cot(w/2)] , a=-8#o0. (A.38)
®1

For practical purposes, the value of ¢ may be taken at the
mid-point of the layer concerned. For a more accurate result
the value of ¢ may be estimated by equating the results of
(A.35),---,(A.38) to those of (A.29),---,(A.32). The result-

ing value of c is given by

c =c + afzs - zl)[(Qsinm1+ sinqb)/6sinwlj.

It is readily seen that the parenthetical factor is 1/2 when
v, and @, are nearly the same. This factor reduces to 1/3

for a minimum value when @, = O

v) The transverse displacement.

The standard methods of ray tracing handle
the situation as though the ray paths lay in planes through
the sound source. Such 1s only an approximation, as pointed
out by Milnel2®hng Emden(®7) Tne third of the ray path
equatlions may be integrated approximately to estimate the
transverse displacement. From
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dy/dt = v

one may assume that v 1s a constant in the layer concerned
so that the displacement 1s approximately given by

11

Y2 = Y2 v (tz - tl) P)

or

—

Y2 - Y2 = v (Xz - X1)/C s

where Vv 1is the mean transverse component in the layer and

C is the mean speed of sound in the layer. tz - t; 1is the
time of traverse from (A.25),---,(A.28) or, more simply,
Xz - X; 1s the displacement from (A.29), ---, (A.32) or (A.35),

---, (A.39). The degree of approximation included is such that

it makes little difference whether the major displacement or
the total displacement is used.

vi) The focusing factor.

It was seen in the preceding section that
the intensity might be expressed in terms of the iIntensity due

to spherical spreading times a "focusing factor," where
f =r/(dr/dy, )tany ,
°
with r = source to receiver distance and Vo = initial inclina-

tion angle of the ray. The inclination angle of the ray in
terms of the phase normal is given by

tany = ¢ sing/{c cosyp + u)

so for the initial conditions

tany, = cosinge/(cocoOspy + Uy ) .

The focusing factor requires that dr/dyo be computed

by some method. This may be done by computing r = r(yo) for

several values of Yyp and performing a numerical differentiation

of the results. It may also be simply computed (at least

m
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approximately) as a part of the computation of r(ypg).

First, express dr/dy, in terms of dr/dp, using

dr/dy, = (dr/d@o)(d$o/d¢o)

so that

dr _dr .. dpgy Eanyg
Vo  dgo -~ o L qye tanpe :

The parenthetical factor may be evaluated as follows

(tante /tanps ) (A¥/dpo ) = 1 + (uy/co )sing, tanp, .

The second term in this final expression is excecdingly small
since not only ug/co 1s small but, usually, sinp,, tamp, are

also small, Consequently, the focusing factor may be effectively
expressed as

= rL(dr/dpc)tan@o].
The ray path equatibn
dx/dt = c cosp + u
may be differentilated with respect to ¢ to glve
d(dx/dpo )/dt = - ¢ sing (dp/dyo)
and from Snell's ILaw

d(dx/depo )/dt =-cosinQO(c052@/cosgwo)

As before,

a(dx/dpe )/dp = [ A(dx/dp )/dt |(dt/dp)
so that
a(dx/dpq ) /dp = (cqsing,/cos?p,)| cosy/(a+peosy) |

where we are concerned with a layer 1in which o = constant,
B = constant,
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This expression integrates at once to give, B # O

5 2

Pz
[ ] Co S1nwe J )ye[tan {i_;_:_l__tan E}] }

Bcos? e,

= (cosingo/acos?yo ) (sing, - singy) ,

®1

in the first instance. The four cases, a®>8%, B®>a®, a + B8 £ 0,

a = -8B # 0 are to be considered. The second relation forms
only a special subcase of the first case.

Though this expression seems formidable, all the evalua-
tions would have been performed in the computation of x4 - xi
(even in the abbreviated form) so that the computational effort
consists only of forming the required sums over the layers in
a somewhat different way. Consequently, the computational
effort is somewhat less in computing the focusing factor along
a ray at the time of ray computation than to compute several

rays and to determine dr/dyo by differentiation of the results.

I
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C. PHYSICAL ASSUMPTIONS BEHIND THE RAY TRACING METHOD

1. Formulation in General Terms

The basic assumptions behind the ray tracing method are
dependent on two major steps in the derivation of the physical
equations. The first step consists of linearizing the equations
of motion. This requires that the perturbations of the medium
be small (i.e., that the intensity of the sound be not too
great). The second step requires that the frequency of the
sound be highj; in fact, the 1limit at infinite frequency is the
sound field that is referred to as that of the ray or geometri-
cal acoustics (Ingard 2 . It is sometimes stated that the
variation of the properties of the air over a distance of one
wavelength be small. The first restriction on the amplitude
of the sound is generally satisfied if the mean acoustic veloc-
ity amplitude, U, is small compared with the wave velocity, ¢
The second approximation actually requires more than is stated
in that also the variations must take place "smoothly." This
restriction is effectively that

rv2e|<<|vel

where yc is the gradient of ¢ and v®c is its Laplacian.
(Morse and Ingard(332 p. 80). (The same also holds for the
wind component. )

2. Formulation in Terms of a Ducting Problem

The above statements of the basic assumptions require some
amplification to be meaningful. The specific form of the second
assumption for some very similar refraction problems is given
by Brekhovskikh(l)for an underwater sound channel consisting
of a layer of uniform speed of sound of depth H below which
the speed of sound has a positive gradient (increases with depth).
The situation 1s almost exactly analogous to the case of a

layer of air with constant temperature capped by an inversion.
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In this instance the relation required is that
Y3
H >> [AZCO/MW(dc/dz)Jz H*.

The situation is illustrated in Figure 1l., It is readily seen
that for the higher frequencies the assumption is readily
fulfilled for most atmospheric cases, but that for freguencies
of a few cycles per second, it is seldom (if ever) satisfied.
Another form of the assumptions is the statement that
the initial ray inclination angle must not be too small:
/3

Vo >> [x(dc/dz)/Zvjz Wj.

This formulation of the assumption is illustrated in Figure 12.

3. Formulation in Terms of Ray Tube Cross Section

The assumptions behind the ray tracing method are discussed
at some length by Kerr(34%or the case of short radio waves.
Though the waves are not sound waves, the mathematical arguments
and assumptions are analogous in considerable detail when appro-
priate changes in the quantities concerned are made. The two
conditions are that

(A/2mn) (|wn/n])<< 1,

and
(r/2mn) (|vd/I|)<< 1,

where

Il

wavelength

il

index of refraction = c¢o/(c+u)
= wind speed
B(X,y,Z)/a(g,ﬂ ,C)S §=fl(X:Y:Z)9

‘I’]=f2 (XJyJZ)ﬁ

S I i R

nga(xzy5z):

XL

LB
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(x,y,2) are the space coordinates and (g,n,{) are coordinates
such that E,nm determine the ray (from the intersection of the
surfaces § = const, m = const) while { corresponds to a sur-
face normal to the rays, a wave front. In somewhat different

terms,
J = dA/n(d&dn)

where dA = element of area on a wave front cut by the ray
tube determined by the parameters §,€£ + d€,n,n + dn . Thus,
along a ray tube, J is proportional to the cross-section of
the ray tube.

The first inequality simply states that the change in
index of refraction in a wavelength must be small compared with
unity. The second condition states that the relative change
in cross section of a ray tube in a wavelength must also be
small compared with unity. Unfortunately, the second criterion
is not applicable a priori. It does, however, indicate already
that the situation cannot be assessed by the path of a single
ray and that the ray has meaning only when associated with the
family of rays to which it belongs (Kerr(34) p. 54). This is

particularly important in the case of a "focus,"

where the ray
method gives a ridiculous answer for sound intensity and, conse-

quently, other methods must be used for the intensity esitmate.

4, Formulation in Terms of Longest Wavelength Ducted

The return of sound waves to the earth is analogous to the
problem of the ducting of short radio waves. One may use the
analysis of Kerr(34}or the longest wavelength trapped in a
duct to give a criterion for the applicability of the ray trac-
ing method in the atmosphere:

d
Ao = (&/5/3)%’ [n(z)-m‘d)]l'2 az

where d is the height of the duct. The index of refraction may
be represented as
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n(z) = 00/[00 + w + (& + B)zJ

where uo 1s wind speed at z = 0 and o = dc¢/dz, B=du/dz,
which are assumed constant. Performing the integration approxi-

mately, it follows that
1/2

) - (16J§79)Ka+8)d3/cO]

max

which may be written in the form

1/3

d = [xa 00/(16J§79§(a+8)]

max

which corresponds to the strong inequality from Brekhovskikh

guoted previously. Some minor changes are to be noted:

Brekhovskikh Above
H (1) d
>> (2) =
A (3) xmax
2~
b T 12,6 () (16v/2/9) = 6.32
dc/dz (5) de/dz + du/dz

The important differences lie in items (2), where strong in-
equality is replaced by approximate equality! (3), where the
interpretation of the wavelength is correspondingly different;
and (4), where the numerical factors are somewhat different.

The expression for Kmax may be expressed differently
if we let bdc'= (¢ + B)-d = change (including wind) over the
distance d. Then

Y2

Moy = 2.5d(8&] o)

The equation is graphed in Figure 13.

Item (1) is essentially notation while item (5) is

essentially the same in both cases. (Wind was included above

Wil
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since it is a part of the acoustic problem.)

One may interpret the Brekhovskikh strong inequality as
the approximate equality above provided that the wavelength is
decreased by a factor of approximately 0.71. Stated differently,
given the ordinate (H or d) and abscissa (dc/dz or o+B) in
Figure 13, the wavelength indicated 1s one which, from
Brekhovskikh's inequality, should be much larger than that
required to satisfy the ray method assumptions; while from the
approximate quality above 0.71 times the wavelength indicated
is the maximum wavelength ducted.

In this connection, Kerr(342 page 21, seems pertinent;
"_--radiation at several times these wavelengths may also be
affected strongly by the duct."
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D. DISCONTINUOUS CHARACTER OF dr/dyo IN THE "LINEAR LAYER" MODEL

The calculation procedures for the ray tracing method gener-
ally violate the second of the basic assumptions of the ray
tracing technique. These assumptions were, essentially,
that:

a) Changes in property were small over a wavelength
or M|ve{<<c¢c ; and that

b) Changes take place smoothly over a wavelength

or M| vZc|<<|ve].

In the "linear layer" model of the atmosphere (in which changes
in speed of sound and wind are linear functions of height with-
in reasonably small layers), gradient changes at the layer
boundaries are discontinuous. The situation is illustrated in
Figure 1%, in which the "linear layer" model is indicated by the
solid lines while a "smoothly varying" atmosphere is indicated
by the dashed curves. The value of v c ~ d°c/dz° is essentially
zero everywhere except near the layer boundary but has a "hump"
here in the smoothly varying case. As the smooth case approaches
the linear case, the hump becomes larger. Thus, in the "linear
layer" one may think of v ¢ as zero everywhere except on layer
boundaries where it has an "infinite" discontinuity. Consequently,
the "linear layer" model cannot satisfy the second assumption for

any wavelength,

The failure to satisfy the second assumption shows up
clearly in certain irregularities of the ray tracing results.
We carry through this arithmetical exercise in the following.

Consider a simplified case in which there is no wind* so that

* This assumption is made to simplify the arithmetic. In this
case we need not quibble about the difference between "ray"

inclination, ¥ , and "phase normal", ® , since they are identical.

el il
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the ray tracing may be represented by the layer formula

n-1
r=2Y R (sin;oi_1 - sinpi) + 2R sinp ,
1
Ry = (co/cosye )/(de/dz); = Co/115COPo 5 (1.39)

C1/00&$i = Co/COS®wo

It 1s readily seen that

n-1
dr/a@°=(2cosinwo/coszwo)El/plsinm +3 (Luy,, - l/ui)/sinpi]. (A.k0)
1

Consider now the ray, w? , which becomes tangent (horizontal)
to the k’th interface, The value of sinmf is determined by
Snell's Law

k
cosp, = Co/Cy
with cosp, = 1. The value of r and of dr/dpe from (A.39) and
(A.40) respectively are nicely defined. The values of sinp, = 0

are never reached since n = k, and the highest value is k-1 at
the end of summation.

Cconsider the same ray, but as entering the layer above
the k’th interface, The position of return from (A.39) works
very nicely since the last term of the summation

(Riepp ~ Ryo)singy (A.%1)

is zero. The intensity relation, (A.40), is not valid since
the term

(L/yyg = L/ )/s1ngy (a.h2)
is included and 1s undefined.

If we look at the situation from the point of view of
angles ¢, slightly greater than @5: the situation is a
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little better understood. 1In this case the last terms of the
sums to find r and dr/d%ogiven by (A.41) and (A.42) are valid
since sin® # O . However, as %o - o (from above) the final
summation term in (A.41) becomes zero while that of (A.42)
becomes large, its sign depending on the relative values of
pk+1, “k as shown below and in Figure 15;

O <y, <, , dr/d% = - @

0 < “k+1<“k’ dr/d®o ~ + o0

(the value of P must be positive in order to have a ray
tangent at the k'th interface.)

In the third case

e, S0 < Hy > dr/dee = - ©

there is not only a discontinuity in dr/d%o since the ray,
wg » 1s bent upward on the k'th interface and continues

until the level is reached where again (if ever)
c 2 00/cos@§,

In such a case several more (positive) terms are added to the
summation (A.39).

A part of the situation is easily seen by looking into
how the angle, mk , 1s affected by Snell's Law as a function
of wg . For those angles such that mo>w§ , say

Po = $§ + € , one has

e
sin®, = [l - (CK/CO)BCOSE(wg + G)J

from which

sin®, = (Ck/Co)(SiHEmg)U% .
Thus, for € = O , then sin®, = O , but d(sinCpk)/dek -+ o0
i.e., the derivative of sinCPk has a discontinuity at o= ¢§
(vertical tangent).

1 il
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The properties of the function r = r(w.) (radial
distance of the returning ray as a function of the initial
inclination angle) which have been discussed are characteris-
tic of the "linear layer" approximation to atmospheric condi-
tions and are not unique to the particular example related
above. This selection was made only on the basis of its
relatively simple arithmetic to illustrate the point involved.
This point is that for all angles {o such that the ray
becomes tangent to an horizontal interface between layers
with constant gradient of wind and speed of sound, the basic
assumption of "smooth" variation of the atmospheric parameters
is violated for. any wavelength and, consequently, the sound
intensity calculated at these points (zero in the 1imit) cannot

be considered as correct.

The question of what to do about this situation is
difficult. There appear to be two alternatives. The first,
to use a "smooth" variation of parameters c¢ and u before
integrating the equations for the ray, introduces great analy-
tical difficulties unless one resorts to a systematic "numerical
integration" of the equations of the ray. This may be done at
the expense of computer time. A second alternative is to
smooth the computed values of r and dr/dyo (or of f) after-
wards. The second answer raises the question of "How?". This
does not appear to be any more difficult than answering the
same question with regard to the first alternative, how to
smooth the atmospheric data to better (?) represent the atmos-

pheric conditions.

Something along these lines is discussed by Anderson, Gocht,
and Serota (3%)though their work would require extensive modifi-

cation for application to the atmospheric problem.
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E. THE GRADIENT OF THE FOCUSING FACTOR

The focusing factor may be written in the form

f = kr®Jo/J
where J = cross section of the ray tube at distance p
Jo = reference cross section of the ray tube
k = suitable proportionality factor.

It was seen that the second assumption could be expressed as
|v3/J| << 2mn/)

where v = gradient operator. Considering distances
along the ground

(/f)(daf/dr) = 2/r - (1/3)(dJ/dr)

SO0 we must have

|2/r - (1/f)(af/dr)| << 2m/\.

Since we are interested in reasonably large distances such
that r>>x we may neglect the term 2/r on the left so that

(1/f)(df/dr)<< 2w/x .

Consequently, the second assumption implies a reason-
ably smooth field of the focusing factor; the percentage

change of focusing factor in a distance of a wavelength should

be small. This kind of statement is somewhat indefinite, but
if we take it to mean a ratio of 1072, or less, and wish to
include wavelengths up to 100 m (3 cycles), we should have an
upper boundary as 6% per 100 m. In somewhat another form

[d(lO-loglOf)/dr] << 3/

so that the intensity change should not exceed 0.03 db per
hundred meters.

b falpdidn
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F. INTENSITY AT A FOCUS

The focusing factor was expressed
£ = r/(dr/dy, )tany,
where

r radial distance from source to receiver

Vo inclination angle of the ray (here assumed the
same at both source and receiver), At those points, or those
angles {, , at which dr/dy, = O , the focusling factor

becomes infinitely large. The resulting intensity
I=1I,°

where I, = intensity for spherical spreading, becomes infinite
at these locations. This result is more dramatic than factual
and 1is brought about by the failure of the second basic
assumption of the ray methods; i.e., at such points the rela-
tive rate of change of ray tube area per wavelength is no
longer negligible. The analysis to determine the focusing
factor must be redone to account for interference effects. It
may be shown that (Brekhovskikh(l), page 483ff) the appropriate
expression for the focusing factor becomes

f = (1.25/tan¢°)[2vrsin¢o/k(d2r/d¢§)]% .

Wave interference whlch takes place at the focus glves
rise to interference zones. The distance from the focus to
the first zero is referred to as the "width" of the first
maximum of intensity and is gilven by the expression

ar = 1,86 [Mr2(a%r/ay2)/(asiny, )27 .
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G. NOTES ON "ROUNDED MAXIMA"

It has been mentioned that the "linear layer" model of
the atmosphere, though convenient, violates at least the
second assumption behind the ray tracing method, that of the
"smoothness" of the changes of speed of sound and wind as a

function of coordinate.

In the following, some ray tracing relations are derived
in some instances in which speed of sound changes smoothly in
the vertical. The situation is most critical when the speed
of sound has a maximum or secondary maximum. In such a case
the vertical gradient of the speed of sound changes abruptly
from positive to negative with the possibility of rather
large changes. To simplify the arithmetic, the wind is
ignored. This permits treating wave normals as ray tangents
and eliminates the correction term for downwind ray displace-

ment due to wind.

When a maximum or secondary maximum with a "corner', as
in the linear layer model, occurs in the speed of sound vs
height curve, the ray return to the ground shows a break or a
shadow zone. When the corner at the maximum is rounded to
have a zero gardient at the maximum value, the ray tracing
picture is altered materially. The break in the function
r = r(}o) is eliminated. There remains, however, a discon-
tinuity in the sense that for {yo-¢1 , r—+dD. This means that

the shadow zone has been eliminated and the whole space becomes

ensonified (however lightly).

1. Parabolic Maximum Instead of a Corner

Let the values of the speed of sound at two levels be

¢y and cp and let the heights be O, H. The usual linear model

is
c = c, + [(CQ—CI)/H]Z, O<z<H.

o (b Ifls |Ji
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This may be replaced by a parametric linear-quadratic model of
the form

cC=2¢ + 0z , 0O <2z < h,

c = cy~- Y(H-2)?, h <z < H,

with the formulalion of a , y depending on the parameter h.
To obtain a match at z = h of ¢ and dc/dz,

cy + ah = ¢ - y(H-h)? ,

o3 2y(H-h) ,

whence
a = 2(cp - c;p)/(H+th) ,

i

v (ce - ¢1)/(HZ-n?) .

The final expressions are

c cl+2[(cz-cl)/(H+h)Jz, Os z <h,

¢ = cp -] (ca-cq)/(H2-n?) |(H-2)?, hsz < H .

The above provides a way of subdividing a layer with h to obtain
a parabolic maximum. The curvature of the maximum is a function
of h . For h =0, the fit is quadraticy; for h = H , the

fit is linear, as shown in Figure 16.

In practical applications, a judicious choice of the
parameter h 1is necessary. Through "rounding" the maximum, its
use might increase the difficulties of the discontinuous
derivative dc/dz at the junction with lower levels. The slope
at the bottom level of the layer is 2(cz-e1)/(H+h) which
may be made to vary from 2(02 - cl)H to (c8~ C1)/H' If the
slope of the speed of sound curve for the linear layer model
in the layer below lies in this range, a value of p may be
chosen so that dc/dz is the same in both layers at the
Junction. If the slope in the layer below exceeds the larger
value, the choice of h=0 at least minimizes the slope discontinu-
ity at the junction within the limits of this analysis (i.e.,
remaining confined to modifying this layer only). When the
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slope of the layer below is less than the lower 1limit, then
any choice of h < H increases the slope discontinuity; the
least change at the Juncture being for h = H . 1In this last
case, the "best" choice produces an entirely linear layer
again which 1s exactly what should be avoided. Some value of
h near H seems reasonable but a criterion for selection is

missing.

2. Refraction Earthward in a Parabolic Layer

Consider the layer with a maximum speed of sound at the
top and let the interpolation form be quadratic

c=cy - y(H - 2z)?, Yy = (¢ca - c¢1)/H? .

Consider the case of downward refraction of rays within the
layer. The distance traveled from entry to attaining a

horizontal tangent 1s given by

z¥
X = fcotwdz s, 0 < z* < H,.
o)

The inclination as a function of z depends on Snell's Law

cosyp = (c/c1)COSwp,

where ¢ 1s given above and ¢; is the inclination at z = 0 .
Then

Ve
sineg= [c?-cgcoszm1+2yc2(H-z)zcoszwl—yz(H-z)*cosawl] //;1 .

The inclination will be horizontal for ¢ = O so that the top

of the integration will be determined by

c,%- cjcos®p; = -2yc,y(H-z%)2cos®p,+ y®(H-z%)*cos®y,;.

Then
Y]
sing = (cosuy/cy)(2ycz) X

12
{(z%-2) (2H-z%-2)[1-(v/2c 0 ) {(H-2%)2+(u-2)2} |} .
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To simplify the integration, the factor in brackets 1s
approximated as 1.

The displacement then becomes

2 cz -y (H-2)?
T £ (EYCz)ué[(z*-z)(2H-z*_Z)]ua dz .
or
(2yce ¥2x = (cx = yu®/%)A - vaB - ¥°C ,
where

a=2(H"’ Z*)

and, for y = z* - z ,

z* z*

- % 3 .
A= I [Y(a+Y)] dy, B = I Y(a+Y)] §dy » C= J ¥ [y(a+y)J dy .
o o

o

The final result is

2¢5 _(C@ -C1 )( 1'-Z-)(-/H)a -1 * g% -
T {201 (Ca ~Cy )}% Holnh [Z /2(H z )]%

I((ca-cl)/Sca]z*(EH-z*)}% .

In the above, it 1s readily seen that the principal part 1is

contalned 1n

X = H[2c2/(cg-cl)]b sinh™ [z*/?(H-z*)]k .

Considering z* as a ray parameter, those rays that penetrate

only a small distance, z*<<H, travel on correspondingly short
distance in the horizontal during the process. Those rays for
which z* » H, 1.e., penetrate nearly the top of the layer,

travel an extremely large horizontal distance; in fact, for z*

+ H, then x +» .
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a) Digression on the Linear ILayer for Comparison

In the case of a llnear layer for which

c = ¢ + az, a=(c; - ¢ )/H,

then

X = [ECIZ*H/(CE'Cl)]% .

It is readlly seen from the above that for z* = 0 then x = 03
while z* = H implies that

X =H [201/(02 - C1)]%-

Consequently, all rays returned in this layer are displaced
(on return to the bottom of the layer) a finite range, depend-
ing on thelr depth of penetration (or on their angle of
inclination at entry through the bottom),.

In comparing the linear layer model and the parabolic model,
note that common values of z¥*¥ In each instance do not indicate

corresponding rays (angles @1)_ They correspond at z* = O,

p1 = 0 and at z* = H, cosgy, = ¢, /c;, but the depth of pene-
tration is greater (same values of @, ) in the case of the linear
model for intermediate values of g, .

3. Penetration of a Parabolic Iayer

The method of integration used in the examples 1s confined
to the case of a ray reaching its maximum height within the
layer concerned. For the rays that penetrate the layer, the
displacement integral 1is

- y(H-z)a} cosp,

H Co
X =~/ﬁ dz
S [cf - {02 - y(H—z)Q}acosgml]%

IR EE
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so that

X = _H/é T {[cl(l-cos¢1)]% +

(cy +c cosg, )

(01 +Cg COSY, a (Cg -Cy )COSCP]_
tanh
[(02‘01)00&$1]é c, (L-cosgp, ) ]t}

where ¢; < c < ¢z 1s an approximate average which was used to
simplify the integration.

For logical consistency to trace the rays penetrating a
layer topped by a rounded maximum of speed of sound, 1t should
be paired with a layer above with similarly rounded '"maximum'
at the bottom.

In this instance

c=2c - vz, Yy = (& 'Cz)/Hz’

and the displacement integral is

(e - yz®)cosyp, dz
/ :
[02 (cy -v2z®) coszwljf

Integration yilelds

¢ (1l+co ¢y =Cp )CO
X = [(cl -cy cosgp, )+ 1 ( " ) tanh ™ (e -c2 Scpl}é]

2[c1+6 °°S$1]% (01'02)(005@1)% (cy —ca cosy, )

In this instance we are allowed g, + 0 and, from the second
term (the principal term) it 1is seen that the displacement
becomes infinite for ¢, + O.
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H. Sound Ray Tracing in an Atmosphere with "Parabolic" ILayers

1. The Atmosphere Model and the Ray Model

The ray model for tracing sound rays in the atmosphere
may be expressed by the ray (differential) equation:

dx _ ¢ cosp + u

dz ¢ sing

and by Snell's Law:

c c,
cosp + u = cosp, T U =K

The above differential equation (A.%43) expresses the fact that

the ray inclination (cot ~l(dx/dz) ) 1s not the same as the

phase normal, ¢, since the sound energy is transported horizon-

tally by the wind component, u. It is assumed that the
propagation 1s in the plane that contains the wind component,
The effect of the wind component perpendicular to this plane
is easlly taken into consideration. Snell's Law (A.%4) also
contains the wind component, and along a "ray", the relation is

constant as indicated by the initial values with subscript on
the right-hand side.

The ray tracing procedure consists of solving (A.44) for
cosp, substituting into (A.%43), and integrating the resulting
expression where the wind component, u, and speed of sound, c,
are consldered as functions of height, z. The result of
eliminating the angle of the phase normal is the expression:

c® cosp, + u [co + (u, ~u) coswo]

B 2 2\%
c{[co + (u, -u) coswoj - [c cos¢°] }5
c® + u(kK-u)

c [(K—u)e - 02]%

dx
dz

(A.45)
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where use has been made of the right part of (A.4%) above.

The radical in the denominator of (A.45) may be factored
so that the expression becomes:

gz = F/[K-(u+c)]%

where

F = [02+u(K-u)]/c[K+c-u]315

The numerator expression, F, 1s a function of altitude,
but does not undergo large changes. Its magnitude is in the
neighborhood of </ ¢/2 , neglecting small effects of u, u<<c,
and considering c and cy/cospe as being of the same order of
magnitude. The denominator of (A.46) is important since for
any ray, g which returns to the earth it becomes zero at
some level, the level for which ¢ = O, the crest or maximum
altitude of the ray. The behavior of the lntegrated form of
(A.%6)

X = Xo = J'{F(z)/[K-(u+c)]%}-dz

i.e., the ray displacement in the horizontal direction, is
strongly affected by the behavior of the denominator near
this level.

In view of the above, the integration of (A.48) may be

approxlmated using the mean value theorem in the form
Z

x =% = F (c) f [K-(we)]® az

Zg

where ¢ 1s a sultable value in the range 2zg< ¢ < z. It 1s
assumed that the layer zg, z 1s not extremely large (usual
practice in ray tracing methods).

(A.46)

(A.47)

(A.48)
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The dilstinction between the many ray traping techniques
involve the way in which the radical in (A.45) 1s handled. 1In
the form (A.45), the variation of ¢ and u with z must be
treated separately. Por each represented by a linear variation
throughout a layer, the integration is elementary (Rothwell(3oy.
If parabolic variation in a layer is considered, the integration
leads to the well known Elliptic Integrals but not 1n a simple
way. (The square root of a rather general quartic is involved
and the integration requilres detailed classification of its
roots.) Even in this case, the other terms of the integrand
are belng lgnored and must be accounted for, When the infegrand
is expressed as in (A.48), the use of a parabolic variation
of utc=v with altitude 1s convenient and the distinction
between the wvariation of u and ¢ separately with altitude is
no longer necessary as far as denominator 1s concerned. The
mixture of u and ¢ in F(z) may be handled in a variety of ways
without leadlng to undue complications. The methods of
carrying out the Iintegration will be discussed subsequently.

2. The Atmospheric Model

The usual model of the atmosphere 1s a "linear layer"
model by which is meant that in layers the sum c+u 1s assumed
to be a linear function of helight, represented by a sequence
of points Jjoined by straight lines. It has been pointed out
that such a model does not satisfy the basic physical assumptions,
particularly in that the second derivative wlith respect to
height has infinite discontinuities at the layer boundaries.

If the linear layer model is abandoned, the question of
what 1s a reasonable substitute is not readily answered. To
some extent, the answer depends on how the atmospheric sounding
to determine ¢ and u is made.
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The usual routine sounding for synoptlc purposes is
recorded in such a way that ¢ is determined from temperature
(virtual) information which is selected at "significant"
levels, These levels are significant because, among other
things, they represent the boundaries of layers through which
the temperature varies linearly with height., Some of these
points may be selected because they represent the occurrence
of local maxima or minima in the sounding. In such a case, a
local "rounding" at these points may be appropriate with the
local maximum or minimum retained at the point itself.

Soundings made in such a way that dava are recorded at
specified time intervals or altitude intervals must be
considered from a different point of view. In this case, the
occurrence of a true local maximum or minimum at the data
point would be qulite accidental, the normal occurrence belng
between the data points., Consequently, Jolning the data points
by straight lines 1n such regions may be Iinappropriate.

a) Parabolic Layer Model

The parabolic layer model considered here is
appropriate for representation of a sounding in which data is
taken at prescribed intervals of time or altitude. It is by
no means a unique representation, but has some inherent
advantages. Among others, it has the advantage of belng a
"smoothest" representation that is thoroughly consistent with
the data. The ground rules for constructing such a representa-
tion are:

a) The function v = utc = v(z) must fit the data
points exactly.

b) The slope dv/dz at the data points 1s assigned
on thé basis of the adJjacent data points,

c) The parabolic arcs must Join wlth a common tangent.

d) When a choice exists, 1t is made so that the
discontinuity of the second derivative at Join
points 1is least,
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The above is formalized in the following. Consider the

quantity v = wutc

Z., Z.
i’ i+l °?

etc.’

= v(z) as specified at data points 249 >

and consider the layer Z4 to z . To

i+1

reduce the subscript algebra let v, = V(Zi) s Vy = V(Zi+1) ,

= Z,.4,-2,
A i i?

+1
at 234

layer Zys 2449

and let k be a parameter that is O at z4 and 1

so that z = zi+(z

141 1)
ags divided into two parts.

k = zi+Ak. Consider the

let the function be represented by the parabola

Vi = a; +b; Ak+cy AR K?

and in the upper part of the parabola

Vo = aptb,Aktc,AZk?

The function values and derivatives are prescribed at w (0)
v(z;) and v, (1)

= v(zi+1) from which

il

<
=

I

aq

= Vv, = by A

= Vv, = a,tb A+c,A®

= VZ’ = b2A+202A2

where v/ = dv/dk (not dv/dz). It then follows that

il

In the lower part,
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Since the two expressions for the upper and lower parts of

the layers must Join with a common tangent, the conditions are

C Ag k2 =Cz Az (l—k)z

ve- v - v (1-k)-w '’
and
APk + coA?(1-k) = (vo'-w')/2

from which it follows that
C]_Azk = Vg~V _Vg’(l_k)/2 - Vl,(l+k)/2

czA? (1-k) = w1 ~vg+ve ' (1-k)2 +v, ' (k/2)

so that ¢, and c¢; depend on the location of the Join point k,
0 < k< 1l, The difference in second derivatives at the Joln

point is measured by the difference, c;-¢;, and

R (cp-cy ) = [k(1-k)] 7 [ (vo =vo )+(va "4ws /) /2]
It is readily seen that this difference, cz-c;, is a minimum at
k = 2, the midpoint of the layer, where the first factor on the
right has the value 4.

If the parabola in each half layer is in the form
v = AMBt+Ct®, 0 < t < 1, the coefficients are given by the

following, In the layer z < z < (zn+l+zn)/2

A = vn

— , -
B=v, (zn+1 Zn)/é

0= [0y Vn) = (g + 390 (249 72,) /412

and in the layer (z,,,+z,)/2 < z < Zp4l
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4

A= [(vn + v - (vn+l - v;l)(zn+l - zﬂ)/%]/?

n+1)

— - - 4
B = (Vn+1 Vn) (Vn+1

) (e - o)/
C = [(vppy = V) = By + vz - 2,)/4/2

where now vﬁ, vﬁ , are derlvatives with respect to z, dv/dz,

.{.
at the indicated data points. The asslignment of these derivatlves

is quite arbitrary. The standard Lagrange formula 1s availlable
£ (x) = (£-r)/(x =% )+(Ls =6 )/ (e = 3 )= (£2~1,) /(% -x,)
or the secant approximation
£/ (xn) = (fo-1 )/ (% -x)

or any other handy (and reasonable) form may be used.

2. Integration of the Ray Equation

The ray path integral is

Zg
xo-x = [ [F(z)/(K-v)Flaz
Z

where
K = co/cos g  + ug

F(z) = [c® + u(Kk-u)]/c[K + c-u]%

v=u-++-¢c¢,

il i

IRRIREIRE]

TR R IE

e

MR e

NEEREEN RN L



~114-

The integration is approximated in the form

Zg
Xg =Xy = F(g)./~ (K'V)_% dz
21

where z,< ¢ < z,. For a parabolic layer model, the expression
for v(z) is considered in the form

v=~A+Q (z - 2,)?

All integrals are elementary. The results for the several
cases requlred are tabulated.

1
I. Q> 0, K-A>0, P=[(K-A4)/Q]*®
a: 2y S 2, < Zg
2, = (21 - 24)/Ps Zo = (Zz'z*)/P
1

-1 _
Xp-X, = F(¢) Q% (sin" Z - sin

Z )
b: z, < z, € 2z,
z = (2421)/P, 7o = (24722)/P
X:- %, = F (¢) (sin™* 2, - sin™ 7, )q~1/2
II. Q< 0, KA>0, P=[- (K- A)/Qt
a: z, S 7 < Za

Zo= (20 - 24)/Py Zo = (22 - 24)/P

P (o) (- logf{lz. + ()15 +(1 + B)F1}

e
[
I
e
>
|

b: 2z, < 2z = 2z

7y = (24-2,)/P, 25 = (2,72,)/P

Wi

F(0)(-Q) ¢ log {[z + (1+2)E1/[z+(1422) 1}

&
I
X
]
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III: Q< 0, K-A<O0, P=[(K- A)/Q]%

o
N
A
o
AN
N
1)
I} lcbio ] Lo

Z, = (7 "Z*)/P, ly = (Zz_z*)/P

)

il

Fc)(-0) % log{lze+(22-1)%1 /17 +(2 -1)E1)

Xz —Xl

b: 2, < 2, £ z

Zn (Z*-Zl )/P: 2y = (Z*'Zz )/P

MR

Xp Xy = F(Q)(-Q)_%log{[zl + (% 1)1/ %+(B 1)) }

In the above, the maximum or minimum of v(z) occurs at z,
and z, 1s excluded from the interval z,, z,. In the event

2y < Zy < Zy, a subdivision to place z, at an end point may be
made and one of the above forms may be used.

The linear cases with

VE ol D ]

v = A"I‘B(Z-Zl)

are handled in the expressions

11 A

Iv: a: B> 0, K-A> 0, z, = 3, + (K-A)/B, 7 < 2, < 2

{

§oo

P = (K-4)/B, Q= (2z3-2,)/P

% -x = 2F(c)(P/B)E[1 - (1-Q)F7

b: B< 0, K=-45>0,

P -(K-A)/B, Q - (z5-z )/P

ol

% = 2F(¢) (-B/B)F[ (1+Q)% -1] ?

B g e
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c: B=0, K> A

vo =%y = F(C) (2 -z )/(K-0)E

The determination of F(¢) can be accomplished only by an
appeal to some sort of estimate of its basic variation with
respect to altitude within the layer. If a linear variation
is assumed, the integration is equivalent to that of

% = [ IR+ (BoR) (2o )/ (2 -2, )1 (K-v) F az
21

with the results

I: a: F(C) Fl+[(1?2,—'ﬁ‘1)/(Ze'Zu)]{[(l-Zf)'lE -(1-8)%1/

(s:?.n—1 Z, - sin" 7, )-Zi}
o: F(¢) = B + [(F-R)/(%-2)1{{(1-3 ) -(1-22 )21/
(sin™ 7, - sin™ Zz)-Zl}

IT: ar F(¢) = R (B’ )/(% -z ) (1+2)F - (142 )F1 /108

{tze+(12 )1 12 +(1428 )21} -2 }

b: F(¢) = B+l (Fe-F)/22-% )] .
(L2 - (1422 )% /108{1 2 +(148 1 [ 2+ (1428 )21} -0 }
III: a: F(¢) = R+ ("R )/(Z-%)].

({1 (% -1 /108{lm+ (2 D1 /1a +(Z 1R} -5 )
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b: F(g) = F1+[(F2'F1 )/(Zz-zl)]'

{71221 /10e{ 7+ (2181 12,4 (22 1) B0}, )

IV: a: F(g) = F1+(F2-F1){[1+Q—(1-Q)%]/3Q}

b: F(¢) = B +(F-R ){[(1+Q)%+Q-1]/3Q}

c: F(¢) = (F+F;)/2

where appropriate meaning for the Symbols 1s 1listed in the
previous tabulation of the several cases, FHor those cases

for which x,-x remains finite, 1t appears that for small layers
the value (F;+F, )/2 1s a reasonably good approximation. A
better value would be obtained using the above. The situation
would be still more exact if higher order approximations to

F(z) are used. This 1s a feasible procedure since the integrals

involved are all elementary (but the calculations regquired
become even more tedious than above).
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&, Summary

The ray tracing method involves the evaluation of an
improper integral (integrand becomes large without bound) in
every instance in which a ray returns to earth. The integrand
may be expressed in a form which isolates this particular
factor of the denominator which becomes zero. The remaining
terms may be lumped together in the numerator of the integrand,
The numerator then becomes a slowly varying function of height.
The assumptions about the variation of v = u + ¢ with altitude
in the atmosphere strongly affect the results of the ray
tracing method. The linear layer assumption (points of v(z)
Joined by straightllines) has little virtue in that it may
well fail to represent the atmosphere well, expecially if
data are recorded at arbitrary times during ascent or heights
(without reference to v(z) itself). 1In such cases, a repre-
sentation in terms of parabolic layers may be expected to
describe the situation better. 1In addition, the formulation
in terms of parabolic layers fits the physical assumptions
behind the ray tracing method far better than the "linear
layer" assumption (%o which there are some significant
objections), The formulation in the above terms permits
evaluation of the integrals in elementary terms to a reasonably
high degree of accuracy,
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APPENDIX B

THEORETICAL TREATMENT OF VARIABILITY OF SOUND INTENSITY ESTIMATES

The application of information on the variability of wind,
temperature, and vapor pressure (or relative humidity) to the
problem of estimating sound intensity involves three distinct
and different problems. First, knowlng all about the atmosphere,
it is necessary to be able to calculate the sound intensity.
There is no clearly defined way to do this with a well-defined
degree of accuracy. In the 1imit of high frequenciles (or
short wavelength), the ray traclng method provides some informa-
tion, but the results must not be pushed too far because the
method may be made to produce silly answers. On the other hand,
this is all that is available in the present state of the art.

The second problem involves that of describing the state
of the atmosphere. The most common description (which 1s
adequate for many purposes) is that of the linear layer model,
This model has the advantage that it permits the use of
apbreviated methods in the construction of ray paths, but
the very use of such a model and computing method violates the
basic assumptions of ray acoustics. At least some of this
difficulty may be ironed out by "rounding" some of the "corners"
in the linear layer model. This process brings one back
immediately to the exact description of this "prounding"
process in terms of the real atmosphere., An adequately exact
measurement of the radius of curvature of the "corners" would
require fantastically complex meteorological observations.

The description of the variability of the atmosphere in
time and space and 1lts application to an 1deally accurate sound
intensity estimation procedure constitutes the third major

problem. One approach, using a point-wise perturbation
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technique of the simplified linear layer model, is feasible
but of doubtful accuracy in view of the limitations placed on
the range of allowable parametric variation.

Thls method 1s discussed at some length in the following
section. The somewhat more general approach to the perturbation
of the ray differential equations does not appear to have a
tractable solution.
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1. Effect on the Focusing Factor

S

The errors in sound intensity estimates using the ray
tracing method that are due to the way in which meteorological
parameters affect the pattern of the returning rays may be
discussed in terms of the focusing factor. From the basic

relations

I=1.7, f = r/|dr/dye| tanys (B.1)

it is seen at once that I, is not subject to error from this

source since it is the intensity that would have been present %
due to spherical spreading. The numerator of the expression for '
£ (r, the distance from source to recelver) is also unaffected.
One 1s concerned with the variations that may occur in the
denominator terms, [dr/d¢0| and tany, , at a particular
receiver point; i.e., at a fixed value of r and not in terms

of the initial inclination angle, {¢,. Put in different words,
one is not at all concerned with the variations that may occur
in the ray paths due to meteorological changes, but 1s concerned
with the intensity of sound that arrives at a fixed point
regardless of the path taken by the sound ray in reaching 1it. -

R T ket
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Consider the source-receiver distance in terms of the
initial inclination angle, Up,. Let the meteorological conditions
be represented by the symbol a , where a is a many-component
vector (or a continuous function in a more general sense). For
a glven set of conditions, a , there is an initial inclination
angle, (o , required that the ray reach the receiver., If the
meteorological conditions are changed to a + da and i1f fthe
sound still may be traced to the receiver, it will come from
an initial inclination angle 4V, + dyp . The disturbed condl-
tions may be expressed as a series expanslon 1n terms of da :

and diy, , -
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r(yo+dly, atda) = r(lgs, a) + (3r/ayy)dy, + (3r/3a)da + ---.

Since the rays arrive at the same place, one has, to terms of
first order,

(dr/3¥o)d¥o + (3r/3a)da = O . (B.2)

The relative error in the focusing factor may be expressed
as

80/f = - slar/aug1/(ar/a¥o) - sec?yo (s4o)/bany, . (B.3)
Since yo 1s considered as the independent variable,
8(3r/aye) = (3°r/543)sy + (3°r/d¥da)sa

and we have from (B.1l) and (B.3)

58/f = - [(3°v/345)/(3r/3¥0)18¥s - [(321/30022)/(3r /3¢ )]6a -

(sec® 4 /taniy )8 o -
Using (B.2) in the above
5f/f = [(32r/343)/(3r/34s ) + sec®y,/(3r/3ys)tany,](3r/5a)sa -
[ (32r/3vs32a)/(3r/a Vs )1ba.
Since 3r/a¥, = r/f tany, ,

5L/f = (f-tanwo/%)[{(azr/éw%)(f-tanwo/f) + sec2w0}<ar/éa) -

(B.4)
3%r/3yedalsa .
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Use of (B.4) to estimate the error of the focusing factor

requires that one must estimate I, Yo, d°~/3¥5, dr/da, and
3%r/3¥03a (r being given). One might think it was unnecessary

to estimate the gquantity dr/da, the change of the distance of

ray return with respect to meteorological parameter. This has

crept in through the back door, so to speak. Though we could

care less about which ray returns at the given distance, r, Wwe

need to know this derivative to estimate by how much the

meteorological parameter change has changed the initial ray
inclination angle.

The expression (B.4) for the relative change of the
focusing factor is in the form of a sum of terms 1f the

meteorological parameter, a, 1S representative of several
itemss; a1 , ---

If we let
A = (3°r/3Y¥3) (f tan¥o/r) + sec Yo ,
then
5r/f = (f tan¥o/r)LLA(3r/0a1) - 3°r/3¥odaltday + ---

+{A(3r/3a ) - 3% /3¥oda Jba
or
5t/f = (£ tan¥o/r)LA{(dr/3a1)day + --- + (ar/2a,)ba )
~{(3%r/d¥0day + --= + (3°r/d¥oda )ba, }]

which may be written as

57/f = (f tan¥o/r)LA(8F) - (8G)J , (B.5)
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where

&F

(dr/3a, )s6a, + --- + (ar'/aan)éan ,

(B.6)
5G

Il

(3°r/3¥gaa; Joa, + --- + (azry%woaan)aan .

2. Estimates on the Basis of an Elementary Model

To obtain a preliminary estimate of the effect of the
change in meteorological parameter, sa, on the focusing factor,
estimates of the quantities ar/5a and 3°r/3¥,3a must be obtained,
These may be approximated using the "circular arc" approximation
in a simplified form. Then

1/Ry = - (aycosyg + Bi)/ e,

and

X3 T Xy g =—Ri(sin11:i - siny, ) .

Consider a perturbation of the meteorological parameters
Cy and u, at the k'th level. Then

/
Cre = e + Ac ,

u uk + Au ,

x‘\

where ck , u&'are the perturbed values and Ac, Au, represent

the amount of the perturbation. The parameters at the other
levels are considered as unchanged., Then consider the ray
path made up of the sum of terms in X3y ~ X341 - The values of
oy and Bi are given by

ay = (Ci - Ci-l)/(zi - Zi"l) s

Pr= (o —uy )z -2y ),
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so that changes of parameter at the k'th level change the

values of R over the k'th and (k + 1)'th intervals and change

the value of ¢ . All other values 1In the sum remain unchanged.
For a ray that reaches higher into the atmosphere than the

(k + 1)'th level, the total horizontal distance traveled is given

by

i1n the unperturbed condition and is given by

7 - ¥ -
rho= e 42X, T X )

in the perturbed condition. In other words, the total
perturbation of distance to the return point 1s due to the
distance perturbation that takes place between levels k-1
and k+1 and is accounted for at the (k+1)'th level,

The analysis wilill be carried through with the approximation
that u = o so that only speed of sound changes need be considered,
The wind 1s approximately accounted for by addition to the speed
of sound., In this instance, ¢ = ¢ so that the quibble concerning
ray tangents and phase normals is avolided.

Using the first order approximation
I — —
Xiegl T Fpa1 = @F/00)bey .
Then since

Xepy T Xygoq ="Rylsingy - singy 1) - Ry, (singy 4 -singp, ) ,

it follows that
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axk+1/ack = (aRk/aCk)(Sirkpk - Sil’kpk_l) + aRk+l/aCk)(Sincpk+l -

simp, ) + (R - Ry,q)cose (ap/ac))

since ¢, _q and o, ,q are independent of ¢, . Then
3R, /3¢, = - R cospe /e (2, - 2, 1) 1s
3Ryy1/0¢) = F Ry ©0890/Co (21 — 2y)

From Snell's ILaw one obtalns

awk/Bck = - cosmo/cosinwk .
Then
3%, 1/3¢, = - (cospo/co )[R (sing, - sinp, 1)/(2) - 2, 1)
Riep1 (8100y4y = sy )/ (207 - 2) +
(Ry = Ryyp)oospy/sing, ]
Slnce

K T Zx-1 = T By (coscpk - cosmk_l),

g =~ Biyp (cospy . - cospy)

we have
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sinp, - sing, _ sing - sing %

3%)11/9¢y = (cOospo/co )[Ry : CE - Ry <L £ -
oSy - COSg, _; cosp, .1 = COSpy i
(R, - Rk+1) coapk/sinmk] .

Now
(sing - sinB)/(cosa - cosB) = - cot[(a + B)/2] ,
so that

axk_+l/aok. = (GOScpo/Co )[RK{COt[ (Cpk—_ + Cpk_l)/gj - CO’CCPK} -

R {00t (pyeyy + @c)/21 = cotiy}d

R L R L R NN R T e T A TR TR e 1 Y e e W RN T ERI D

Bt i

From the relation

cotq - cotB = - sin(a-B)/f8ing sing),

it follows that E

COSp, . sin[(mk-@k_l)/E] sin[(¢k+11pk)/2]]

3x, /3¢, = - ——— + R
K . Co Sihcpk K sinf[ (@kﬁpk_l)/ﬂ ekl sin[ (Cok+1+§ok)/2]

The approximations

Prp1tPr = 2 5 P TPy T Py s

and
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Cosp, =~ 1, Sin(cpk/g) = (Sin‘Pk)/Q ’

are used to obtain

3%, 1/d¢, > - cospg (X = X q)ARcosin’p, ),
so that

ar/de, T - CO&$°(Xk+l -xk_l)/@osinzmk). (B.7)

If the term 32°r/3gpeda 1s treated in the same manner,
then one starts with

3r/dpe = 2tanga[--- + Rk(l/sin:pk - l/sinpk_l) +

Ripq (V/sinpy g - 1fsing ) + ---]1

so that
33/3v00¢) = - 2tampo[ (3R, /d¢, ) (1/51nw, - 1/sing, 1) +
(3Ryy1/9¢,) (1/sinp, 1 - 1/sinp, ) -

(Ryeyq = Ry) (e /oey)/sine, ] .

When this is compared with the first expression for axk+1/ack s

it is obvlious that if we make the same approximations, one
will eventually end up with

azr/bmack =~ (tanpo/sinﬁmk)(ar/éck) . (B.B)

We are now in position to estimate the long parenthetical
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expressions of (B.6) on the basis of (B.7) and (B.8)

5F >~ - (cosly/cosin® gy )[ (sinyy/siny; )® (x4 -Xo)(6cy + b ) + ===
+ (sinyg/sinyy )2 (x _q - Xn_S)(écn_2 +8u,_5)]
§G =~ - (1/cosinfgcosye ) (siny,/siny, )* (%2 -% ) (scy + v ) + ---

+ (sinwo/sin¢n_2)*(xn_l—xn_B)(Gcn_2+ 5un_2)] ,

where the values of Ac are now replaced by the part due to the
error in speed of sound and wind separately.

It is seen that the error contribution at each level is
proportional to the distance traveled in the adjacent layers
and 1s weighted by a factor which is proportional to the
Inverse square of the sine of the ray inclination in one case
and the inverse fourth power in the other. Consequently, the
errors at the higher levels are much more strongly weighted
than those of the lower levels.

If, in the above, we write
(Zk+1 - Zk_l)/(xk+l - xk_l) >~ tany, = siny,

and if Zk+l - Z

levels, then

k-1 = 2Az where Az = helght interval between

n-2

8F = - [2(Az)cosyy/Casiny,] }E: (sinqjo/sinwk)3(éck + 6uk) ,

k=1

n-2

5G =~ ~ [2Az)/sin3¢°cO][cOsY]:£: (sinye /siny, )® (8¢, + su, ) .

k=1
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The summation terminates at n-2 since the values at n-1
must remain as given by Snell's Law. The case for n-1l, the
level at the bottom of the layer in whlch the ray reaches its
maximum, and that for n, the top of thls layer, requires
separate treatment. The same 1s true for the bottom, n = o,

a) Simplified Example

The calculation of the coefflclients for §F and
5G 1s dependent on the particular situatlon with respect to
which the variation is computed. In a particularly simple
case of a linear variation from the surface upward, the relative
error of the focusing factor may be expressed approximately as

n-2
5T/ =~ [1/2c0(n—p)sin2¢°]:E: [(n—p)/(n-p-kkfk(éck + ou )
k=1

where n = the number of layers involved 1n the ray traced.

If H d1is the maximum height of the ray and Az the height
interval between measurements of ¢ and u , then H/(Az) = n-p,
where O<p < 1 ; i.e., p 1s the measure 1in units of Az by
which the height H fails to reach the height of the top or
n'th layer. The coefficlents of the sum are given below for

the particular case of n = 10, p = 0.5

n-p 52 n-p sR
k [ n-p-k] k [ n-p-k]
1 1.32 5 6.89
2 1.82 6 12.2
3 2.55 7 28.3
b 3.49 8 101.

The last value for p = 0.1 and 0.9 would be 62.1 and 208.,
respectively. It is readily seen that the parameter value
errors near the maximum height of the ray far outwelgh the
values at the lower levels,
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b) Restraints on the Variatlon of Parameters
In the estimate of the change of r and 3r/3iy,
due to the varlation of the atmospheric parameters, there are

some limits to the variation which should be kept in mind.

These come under two categoriles.

1. The variations should be small enough that
none of the assumptions of the ray method are violated in the

perturbed sounding. (In a technical sense, this is impossible
since the linear layer model violates these assumptions anyway.

In another sense, the variations should be small since the
method is basically a first order "differential method.")

2. What variations occur should not change the
basic character of the curve of ¢ + u as a function of
altitude. (Since u = Wcosh, W = wind speed, 6 = azimuth,
one might insist that this statement hold for any azimuth.)

The second polnt requires some explanation, By the
preservation "character'" of the curve, 1t is intended that
the original and perturbed curves should exhibit maxima and
minima at the same levels and that 1little secondary extremes
are not introduced by the perturbations. This criterion may

be expressed as

|50k| < smaller of {lck+l - Ckl ’ le - Ck_ll}

with a similar expression for the wind component. It is
evident that the allowable variation of 5ck 1s dependent on
the thickness of the layers into which the atmosphere is

divided since

leyrn = el = lal(zqq - 20 -

¢c) The Top Two Levels
The contribution of the top two levels, n and
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n-1, to the error in the focusing factor require a modification
of the previous treatment. It was previously assumed, in
treating a perturbation at level k , that the ray entering

at level k-1 made its exit at level k+1. The ray 1is assumed
to bend earthward in the layer between levels n-1 and n so
that the conditions are not fulfilled.

In the case of the top level, n , the perturbation affects
only the radius of curvature 1n this layer which changes the
distance traveled and height of the maximum. Let

X; - Xn-l =7 RnSin‘pn-l

be the distance traveled in the (n-1, n) layer. We designate
by (xﬁ s zﬁ) the coordinates of the maximum (rather than using
unmodlfied symbols since these have been associated with the

level heights; 2,1 < z; < zn). The methodology 1s the same

as before with the result that

- * -
/ ( y )[ Rn “n “n-1 %
3x*¥/ac_ = (R _cospq/cC — — J
n n n e Zn Zn-1 Zn Zn'l

The constraints on acn are stronger than before, since
1t must be assumed that the ray still returns earthward, There
*
is a c; such that Ch-1 < ¢y < ch for which 1t 1s required
that

In the case of the n-1 level, the result 1s nearly the
same as before

*
3%, fde 4 = (cosmo/cosinzmn_l){(x; - X, 5)/2 +

[(S - x,_)/2100 - Wz, = 25) /(2 - z,.1)1}
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6cn_1

to assure that the ray concerned

returns earthward in the level between 2z _4 and 2, -

v b i e b |

Wy e e

R TR E KRR

RIS URR R O

it |



-134-

3. Variation Approach to the Meteorological Errors

It was seen
of the variation
of the variation
to the variation

this variation,

dx/dt
dz/dt

and Snell's Law

in
of
of
of
the

\
o

the previous section that at least a part
the focusing factor requires an estimate
the landing distance of a ray with respect
the meteorclogical parameter. To estimate
ray equations

cosp + u

sing

c/cosp + U = CuCOSpy + Ug

are subject to variation;

d(6x)/dt = cosp(sc) - ¢ sinp(sp) + (su) ,
d(sz)/dt = sinp(sc) + c cosp (sp)
secp (8c) + ¢ sinpsec®p(sp) + (6u) = 0 .
so that
sp = - (cosp/c sinp)(sc + su cosp) ;
d(sx)/dt = 2 cosp(sc) + (1 + cos®p)(su) ,
d(6z)/dt = (-1/sinp)[cos2p(sc) + cos?p(su)] .

The variation §
ray path
t

X

52

are obtained by integrating along the

5x =f [2005(p(_60) + (1 + cosch)(éu):ldt s

O

t

62 =-:/kl/éinm)[cos2m(6c) + ooss¢(5u)]dt .

o]
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The first integral may be approximated quite easily by

the expression
t

5% = 2[ (¢ + 6u)dt

o

since in general the angle ¢ d1s small.

The second integral involves singp in the denominator so
that the integral becomes large near ¢ = 0 , or the crest of
the ray. It 1s easily verified that the integral cannot be
evaluated by the usual methods,

It would appear that the knowledge of 6x , which was
estimated easily, would be sufficient to estimate the variation
of the landing point of the ray. This is not the case since

the variation of the "range" is composed of two parts
sT = 6% + (82z)cobiye

as shown in Fig. 17.

The variation of coordinates 6&x , 8z transfers a point
on the ray from the point P (original point of ray return)
to the point B on the new ray. The point B may well not
be the new location of ray return and, consequently, the new

ray must be extended to the new return point P’.

This is connected with the fact that the limits of
integration are over the time to traverse the ray originally

so that x + 6x , 2z + 6z 1s the point reached on the perturbed

ray in the same time of travel that it took on the original

ray to reach the ground., The perturbed return point is obtalned

by extending the perturbed ray to the ground along a straight

line parallel to the original ray.

The situation is "doubly" bad since not only is the value
§z given by an lmproper integral, but, in addition, the
factor coty, 1is large, since the ray incllnation angles are

small.
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a) Height as Independent Variable

The basic ray equation

dx/dz = (c cosp + u)/c simy

and

c/cosy + u = cy/cospe + Ug

may be used to illustrate the problems in a direct approach to
the estimate of errors by a perturbation method.

To start, note that the factor sinp 1in the denominator
of the expression for dx/dz i1s zero at the top of the ray
(the ray is horizontal). The upper 1limit of integration is
determined by this condition from Snell's Law:

c(z®) + u(z*) = cq/cosp, + vy .

The integration may be performed, since, though improper, the
integral converges at this upper 1limit., This is easlly seen
if u= 0, wuy =0, 1in which case (for the linear layer
model) one may write

1l

cosp = 1 - (a/c™)(2" - z)

so that
sinp ~ (2a/c*)¥ (2% - 2)b

(the situation 1s not changed if u # 0 , but the algebra 1s
more tedious,)

To estimate the perturbation in x from perturbations of
¢ and u, the method of the preceding section leads to

d(sx)/dz = [(c cosp + u)/casinam](Gu) +

[{c(l+sin@m) + u cosam}/czsin?m](éc) .
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" In the integrated form

§X =./.(1/c sinm)[éu - (u/c)(éc)]dz + [(c cosp + u)/c sinm}z*(éz*)

@)

where the last term is the part due to the change in the upper
1limit of integration, 5z , due to the changed atmosphere.
This looks very fine, except that the last term 1s undefined,
since ® = O at the upper limit.

The expression ar/émo appearing in the focusing factor
is much more important in estimating the perturbation or errors
of sound intensity. If one sets up the differential equation

for this quantity, then

1) |

a(d3x/3p, )/dz = - (cosinpo/coszmc)[(c + u co&p)coszm/czsinam] .

FhL e wsdtgpdpel 101

This cannot be integrated using the linear layer model since

at the upper limit the integral is improper like (z* - z)-wb.

Wi by tbi 10

The difficulties in using differential methods to estimate
sx and the improper expression for the integral of ax/émo
are closely connected with the fact that the linear layer model
of the atmosphere violates the second fundamental assumption

T

PO S

of the ray method - smoothness.
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APPENDIX C

CONSTRUCTION OF RANDOM NUMBERS HAVING GIVEN SECOND ORDER

RELATTONS

1., Linear Transformation Method

Let w4, 1 =1, ---, n, be an ensemble of sequences of
correlated random numbers such that W = o; and wu, =

O,0yry, are known. It is required to construct-a particular
realization or a set of realizations that have the required
second order properties, Let the quantities u, /0, be
represented in terms of a linear transformation of some

other set of numbers, x,, 1=1, =---, n,

where v, has unlt standard deviation and ViVy = Tryy. In terms
of the x,'s,

n n
ViV, =1, = Z E a, a‘q(xpxq) .
p=1 q:l
It 1s convenlent to take xx =1 1f p=gq and = 0 1if

P # q. Such a set of numbers will be of unit variance
(standard deviation equal to 1), independent, and are easlly
constructed., With these restrictions on the numbers X,, the
above reduces to

n
Pyy = a1, 8y, i, J=1, ---, n
p=1
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which is to be solved for the n? coefficients a in terms

of the n(n+1)/2 values of r,, (ry, =r,,).

1
The last equatlon may be written in matrix form as
R = AA/

where R = {r;,}, A= {a,,;} and A’ = transpose of A. The
matrix R is symmetric and nonsingular so that it has an (upper
triangular) square root matrix S, S = {S,J}, 8y, = 0 1if

i> J, with the property

R = 3’3

where S’ 1s the transpose of S. We simply identify A with the
transpose of S

A =g’

so that A is simply the lower triangular square root of R,
The algorithm for finding the elements of S (or of A) is
straightforeward and easily carried out.

This simple method of computing A has not been noted in
the literature. The usual procedure is to find the proper

values and vectors of R by solving the matrix equation
RM = MD

where M is the matrix whose columns are the proper vectors

of R (unit vectors since MM’ = I) and D is the diagonal matrix
of the proper values of R (D = {d,,}, d,, =0 1if 1 5 J,
the diagonal elements d,,, are the proper values). Since R is
symmetric and positive definite, then the proper values are
all positive so that

R = MDM’ = (MDZ)(MmD% )’
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Consequently, the value of A 1s obtalned from

a = ok

where Dﬁ is the diagonal matrix wlth diagonal elements +/d,,.

The method for finding proper values and vectors involves
much more computation than that of finding the triangular
square root. All proper values and vectors are requlred, not
Just a few corresponding to the largest proper values.

It 1s not legitimate to equate the two values of A
obtained by these methods, The first expression for A 1s a
lower triangular matrix. The second expression for A does
not necessarlly have this property. The initial problem 1s under-
determined and does not have a unique solution., A solutlon
depends on the nature of the additlonal restrictlons that are
imposed,

There are trade-offs between the two methods for some
purposes. The frequency function of ui/oi has not been
mentioned, nor has that of the 1ndependent numbers, x,, with
unlt variance. If the values of x, are normally distributed,
then elther method results in values of v, = u,/0, that are
normally distributed and properly correlated, 1If the values
of x, are not normally distributed, then the distribution
of the v, = u,/0, depends strongly on the method of construct-
ing the matrix A,

In the first instance, in long form,

Ul/o'.n~

vy 811X ,

I

= ua/dz

&
!

SizX t S22%; ,

Vo = un/dn =B, %1 F 8, % + -~ + 5,,X,
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so that w = uyﬁl has the same distributlon function as x ;
vz = u, /0, will have a distribution depending on those of both
X3 and X3 ; etec, In the second instance, each of the values
of v, =, /0, depend linearly on all n values of x, . 1In
this case, if n 1s appreclable, then the distribution of v,
will be nearly normal (n > 8 1s sufficient in many cases to
bring about a nearly normal situation) regardless of the
distribution of the x,'s. (For example, if x, 1s chosen as
+1, 0, -1, at random, then for reasonably large n the u,'s
wlll be nearly normally distributed.) (See law of Large
Numbers in any standard text on probability.)

Fortunately, we are satisfiled if the u,'s are normally
distributed (or nearly so). If another specific distribution
is required, the problem becomes very difficult

2. Method of Averages

The inltlal requirements for the method of averages are
simllar to those of Section 1 preceding. The linear averaging
relation is gilven by

k
vy = u /0, = 2 8yXy44 , 1=1, ---, n .,
J=1

In this case, there are only k coefficients to be determined
and each of the v, 's are determined using these same coefficients
regardless of the value of 1. There are n + k values of the
independent random numbers x, to be provided in each instance.
(This compares with the n? coefficients in the matrix A of
the linear transformation method,)

The covarlance of v, and v, (or correlation coefficient
r,, ) is constructed from

k k
ryy o= Vv, = Z Z apa, (x,,+,xq+_,).
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Since the x,'s are to be independent with unit variance,
then (%, ;%Xg4,)= 0 1f p+i #% q+J and = 1 if p+il = g+J.
This requires that say p =g + J - 1 whence

k
ryy =Z aq gy -t aq
a=1

A restriction is placed on the method because on the left
the indices 1, J appear only in the form J - i. Consequently,
ry, must be a function of only the difference 1in its indices,
j = i. If the indices refer to height levels or time (or time
lags), the spacing must be such that this condition on correlations
1s satisfied., This may be approximately the case when height
or time spacings are equal. (It 1s certainly not true for
equal spacings covering the large range of altltudes).

An additional convention 1s observed in the above summation:
when the index q+j-i is less than 1 or more than k, the value
zero 1s assigned to a4y,

The method is sometimes formulated in symmetric form

k
v, = u /o, =Z ay Xyt

=k

with 2k+1 coefficient, The expressions differ primarily in
the matfer of indexing. Since there are an odd number of
coefficients in the expression above, the case corresponds

to an odd number of coefficlents in the assymetric form.

Returning to the assymmetrical case, the equations to be
solved, in any form, are (using Py-y =Ty, = P:J)

l=r, =af +a? + --- + a2 ,



I’l = al ag + az as + === + a.k -1 ak 9
s = al aa + a2 34 + === 4 ak_zak s
l”k -1 = al ak .

A second restricftfion is now placed on the method. For

fixed k , the scheme can fit only k-1 given correlation
coefficients. The remaining coefficilent is used to "normalize"
the solution in accordance with the first of the above
relations,

It 1s now a question of solving the k simultaneous
quadratic equations., A real solution is desired since all of
the values of v; are to be real., This imposes additional

restrictions on the permissible values of r, , 1 =0,
- k -1
} L]

Other methods, such as autoregressive schemes like

vi =

k
ayvy -y, + b x4
Jj=

1

where the x, are independent random variates may also be used.
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FIG. 10. CROSS SECTION OF A RETURNING RAY TUBE.
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